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SUMMARY

In the first part, the boundary conditions for an open wind tunnel
(:anompressi'ble flow) are examined with special reference to the effects
of the closed entrance and exit sections. Basic condltions arxs that the
velocity must be continuous at the entrance 1lip and that the veloclties
in the upstream and downstream closed portlons must be equal. For the
‘two-dimensicnal open tummsl, interesting pessibilities develop from the
fact that the pressures on the two free surfaces need not be equal.

Electrical analogies that might be used for solving the flow in
open wind tunnels are outlined. Two types are descrihed - one in which
electrical potential corresponds to velocity potential, and another in
which electrical potential corresponds to acceleration potential. The
acceleration-potentlal analogies are probably experimentally simpler
than the veloclty-potential analogles.

In the second part, solutlons are derived for four types of two-
dimensional open tummels, Including one in which the pressures on the
two free surfaces are not equel. Numerical results are given for every
cage. In general, 1f the lifting element is more than half the tunmel
height from the inlet, the bowundary effect at the 1ifting element is
the seme as for an infinitely long open tumnel.

In the third part 1s given a general method for calculating the
boundary effect in an open clrcular wind tunnel of finite Jet length.
Numerical resulte are glven for a lifting element concentrated at a
point on the axise.

INTRODUCTION

The basic theory of boundary correctlons for an open wind tunnel
was given by Prandtl many years ago (reference 1) and has since been
used with reasonable success. The infinitely long open Jjet that was
assumed in Prandtl's analysis , however, hes been frequently questioned
as an adequate representation for an open wind tummel, which normally
hes a relatively short Jet betweert closed entrance and exit regicms.
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The present examination of the Problem was occasioned by the need for
boundary corrections for tests in the Langley full-scale tumnel of a
large helicopter, of which the forward edge of the rotor disk reached
almost to the mouth of the entrance bell while the rear edge approached
the exit bell. Previous studies (reference 2) had shown that the
Prandtl theory wae satisfactory for a wing in the usual position in the
tunel (about 20 feet downstream of the entrance) 3 but 1t was felt that
this simple theory was inadequate for such far forward and rearward
locations of the 1lifting surface, and that some further development wes
desirable. The only previous analysis bearing directly on the problem
seemed to be that of reference 3, which considered a lifting element
concentrated at a point on the axis of a circular open tumnel of finite
Jet lengthj; however, the treatment therein was not rigorous, and was
justified only by & somewhat heuristic discussion, so that its general
applicaebility was not obvious. Other studies treated elther two-
dimemsional or axlally symmetrical conditlons (references U4 and 5) and
also did not consider the closed exlt reglion, so that the extent of
their applicebility to the present problem was not at first apparent. A
gimilar Germen wertims report (reference 6), which did not became available
until after the present paper was written, would have been more useful
in this respect because of the generality of its physical discussion.

Because of the particular shape of the tumnel cross section, a
reasonably simple solution in terms of avellable fumctlons seemed unlikelyj
accordingly, the initial effort was directed toward defining the problem
in such a way that 1t could be solved by analogy methods in an electrilcal
tank. Identification of the necessary boundary conditions appeared at
first to be samewhat perplexing; however, after recognition of scme of
the basic physical phencmens, the boundary conditlons were readily
clarified. The problem is thus considered now to be fairly well under-
stood, at least insofar as 1t can be considered linear and wminfluenced
by turbulent mixing at the free surfaces or by the irregular nature of
the flow at the exit. As wlll appear later, however, grave techmnical
difficulties exist In the exact solution by electrical-analogy methods,
go that, for example, actual evaluatlon of the tunnel interferemce for
the large helicopter in the Langley full-scale tumnel, which problem
instigated the present research, has not yet been accamplished.

After the boundary conditions were clarified, amalytical methods of
solution were developed for two~dimensional end circular open tunnels.
These studies have been cambined with the discussion of the boundary
conditions and the electrical analogles to form the present paper, which,
it is hoped, will serve to clarify basic concepts and establish a sound
basis for any further work. ’

The report is divided into three parts. In part I, the boundary
condltions are defined and discussed for the open wind tunnel with closed
entrance and exlt sections, and an outline is given of suggested electri-
cal analogies appliceble to the problem. In part IT, enalytical
solutions are given for various two-dimensional open-tunnel types,
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together with numerous calculated results. In pert ITT, a method of
solution for the circular open tummel is given, together with numerical
results for the case of a lifting element concentrated at a point on the
axis of the tunnel. The treatment in every case is a lilnear one in which
deformation of the Jet boumdary is considered to be small.

The parts were essentially independently prepared. Messrs. Gardner
and Diesendruck contributed the analysis of part IT. Mr. Eisenstadt
contributed part ITI. Dr. RKatzoff contributed part I, and, in the absence
of the others, prepared the numerical results of part II, made several
minor revisilons, and served as general editor of the whole.

/7

I - BOUNDARY CONDITIONS AND

ELECTRICAL ANALOGIES

In part I, boundary conditions for an open wind tumnsl are discussed
wlth special reference to the effects of the closed entrance and exlt
sections. Tt 1s shown that the veloclty on the free surface is not
necessarily equal to the véloclty far upstream in the closed portion and
that cross-flows may exist in the free surface, unlike the case of the
infinitely long open Jet. A basic condition - analogous to the Kutta-
Joukowskl condition for the flow at the trailing edge of an airfoil - is
that the veloclty be continuous at the entrance 1lip. Electrical analogles
that might be used for solving the flow in open wind tunnels are outlined.
Two types are described - one in which electrical potentiel corresponds
to veloclty potential, and another in which electrical potential corre-
sponds to acceleratlion potential.

BOUNDARY CONDITIONS

Résumé of Prandtl's theory.- In Prandtl's original discussion, in
which the entrance and exlt regions are neglected, the tunnel 1s con-
sidered as an infinitely long cylinder on the entire surface of which the
pressure is constant, whence, by Bernoulli's law, the velocity on the
surface i1s constant. If this velocity 1s considered as the sum of the
undisturbed tummel veloclty U and a small perturbation velocity (u,v,w)
due to the presence of a body in the Jet, the condition is then

that (U + w)? + v° + w2 8 U2 + 2Uu = Constent, fram which it is concluded
that u 1s constant over the entlre surface. Furthermore, since wu is
obvliously zero far iIn front of the body, it must be zero over the entire
surface. .

A corollerxry is that, on the Jet surface 5 ‘the perturbation velocity
normal to u (that is, the circumferential velocity) is also zero, as 1s
readily shown from a consideration of the rectangular path SPQR on the

surface of the Jet. (See fig. 1(a) .) As has just been shown, the

e et et m e e ——— —— — - m e —
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veloclty component wu parallel to the lines SP and QR is zeroj hence,
the perturbation potentials at points P and Q are the same as at points S
and R, respectively. If poilnts S and R are far upstream of the body
their potentials will be equal, so that the potentials at points P and Q
are equal. The perturbation potentlal is thus wniform over the entire
surface, snd only perturbation velocities normal to the surface can exlist
at the surface. )

Modification of basic concepts.- If the closed entrance region is
near the body, as shown in figure 1(b), the preceding discussion and
conclusions no longer apply." Thus, although u must still be constant
over the entire free surface, 1t is no longer necessarily zero; that is,
the total velocity on the free surface 1is not necessarily equal to the
velocity far upstream in the closed portion of the tummel. The two
velocities will, in fact, gemerally be wmequal except in special cases
where equality results fram geometrical symmetry of the arrangement.

(For exemple, 1f a horseshoe vortex is located in the horlzontal plane of
symstry of the tunnel, the values of wu at the top and bottom of the
tunnel would be expected to be equal and opposite; but since u must be
uniform over the surface, it follows that u = 0.5 Furthermore, the
veloclties in the Jet surface normal to u (that 1s, the clrcumferential
velocities) are, Iin general, no longer zero (exnept for axially symmetxri-
cal flows, such as that produced by a source on the axis of a circular
tunnel) so that two surface points at the same longitudinal position,

as P! and Q' (fig. 1(b)) do not necessarily have the same valuss of the
perturbation potential.

Entrence-1ip condition.- Consider, for simplicity, the symmetrical
case of figure 1(b), in which the 1ifting element 1s on the horizontal
Plane of symmetry of the tumnel. Since u is zero on the free boundary,
the perturbatlion potential 1s comstant along the elements AB, CD,

EF, « . ., although, as just Indicated, 1t 1s not necessarily the same

for all these elements. This one boundary condition for the open section -
that the potential be constent along each of these elements - does not
suffice, however, to define the problem umiquely. In fact, as will be
obvious from the subsequent discussion of electrical analogies, the
rotentlials of these elements may be qulite arbitrarlily assigned without
violating this condition or the boundery condition on the closed portion
of the turmel (that the normal derivative of the potentlal be zero at +the
wall). In order to avoid this lack of wnlqueness, further conditions

must be sought. The most important of these is that the velocity be con-
tinuous (in particular, not infinite) at the entrance lip (points A, C,

E, « o «)o This condition takes cognizance of the fact that, because of
viscosity, the physical flow leaves the 1ip smoothly, Just as 1t leaves
the trailing edge of an alrfoil; the conditlon is, in fact, strictly
analogous to the Kutta-Joukowskl condition for the trailing-edge of an
airfoil, which similarly tekes into account the basic viscosity effect

and provides uniquensss where otherwise an Infinity of solutions would exist.
It is recognized that, Jjust as the Kutta-Joukowskl condition does not
always suffice to predict alrfoil 1ift very accurately, the corresponding
condition for the open tunnel may similerly oversimplify the entrance-lip
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flow; however, as with the alrfoil, the condition is probably adequate
vwhere the flow 1s not subJject to an excessive pressure rise on approaching
the 1ip. References 4, 5, and 6 used the condition, and reference 6, in
addition, discussed it from the physical viewpoilnt and compared 1t with
the alrfoll tralling-edge condltion..

Concerning the downstream end of the ¢pen sectlon, the exit 1ip may
be considered to correspond to the leading edge of an alrfoil and no
effort need be made in an ideallzed flow analysis to eliminate infinite
values of u at thls edge.

Jot contraction or expansion.- It has already been pointed out that,
with a body In the Jet, the velocity on the free surface is not necessarlly
equal to the velocity far upstreem in the closed portion. During the
course of the Investigation, 1t was noted that solutioms could be obtained
showing a difference between these two velocities, even when there was no
body in the Jet. Such a flow corresponds merely to a contraction or
expansion of the Jet, as indicated in figure 2. Thus, in figure 2(a), the
veloclty on the free surface 1s lower than the upstream velocity and
remeins s0 even as 1t approaches the exit, in spite of the gradual contrac-
tion of the Jet, because of the comtinuously increasing surface curvature.
The velocity suddenly increases at the exit 1ip and finally is established
at a value greater than that of the upstream velocity. With reasonable
ratlos of entrance to exlt area, the flows of figure 2 may be readily
obtained experimentally.

The silgnificance of this expanding or contracting flow is that it
represents a solution that satisfies all the boundary conditions previously
discussed and is nevertheless undesirsble. In order to avoid such
solutlons, a further condition must accordingly be recognized; namely ,
that the velocitles in the closed porticns far upstream and far downstream
of the open section be equal.

It may be obJected that in the normal design of an open wind tumnel
the exit section 1s made larger than the entrance section. The purpose
of the Increased area is to allow for the reduced veloclty toward the
surface of the Jet resulting fram turbulent mixing with the surrounding
8t1ll alr. Increasing the exit area by other than the correct emount will
result in the type of flow indicated in Ffigures 2(a) or 2(b), with a
corresponding veloclty gradient along the center of the tunnel. In any
potential-flow solution these vilscous effects cannot be consldered.

Spillage .~ When an airfoil 1s tested at a high 1ift coefficient in
an open tunnel, the downward deflection of the Jet may result in appreci-
-able spillage from the lower 1llp of the exit, together with lack of contact
of the main flow with the upper 1lip. (See fig. 3(a)e) The alr lost by
gpillage 1s replaced by air (of , however, a lower total pRessure)
entrained in the exit. ZEven wilthout otherwlse considering the distortion
of the free surface, these flow characteristics might seem too much at
veriance with the previously assumed characteristics to permit applica-
tion of the theories being discussed. The calculations of part IT for
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the two-dimensionsl open tumnel (that is , & rectangular tunnel with
closed sides but open top and bottom) show, however, very little differ-
ence between the tumnel-induced-downwash distributions for the tummel
with two exit 1ips and the tummel with one exit 1lip. That is , 1if
figure 3(a) ‘ig assumed to represent a Jtwo-dimenslonal flow, the fact
that the upper 1ip of the exit is out of the. flow fleld so that the
lower 1ip takes over the entire burden of straightening the jet does not
greatly affect the induced downwasho.

The effect of the exit 1lip on ‘the flow phencmena is the least clear
of the various phases of the present problem. For open wind tumnels
having essentlally unflared exlts, similar to that indicated in filgure 3(a) R
the suggestlons of the preceding paragraph are probably adequate. The
exlt of the Langley full-scale turmel, however, has a large bell mouth,
and when airplanes are being tested at high 1ift coefficients a downward
deflection of the air off the lower part of the bell, roughly as indicated
In figure 3(d) ; occurs. Whether the previously suggested concepts or,
indeed, any linear theory can serve satlsfactorily for this case seems
questionable.

Unequal surface pressures.- An interesting method of avoiding
splliage suggests 1ltself In the case of the two-dimemsional open tunnel:
If the space below the tummel is Inclosed, an excess pressure willl be
built up in this space, compared with the pressure in the space above
the upper free surface, so that the flow will be pushed up sufficilently
to eliminate the splllage and ensure precilse contact of the lower free
surface with the lower exit 1lip. (See fig. 3(c).) The extent to which
a free two-dimensional Jet can be deformed by a pressure difference
across 1ts boundaries, or, stated differently, the extent to which a two-
dimensional free Jet wilill deform in order to follow the only available
prath, 1s indicated by the smoke-flow photograph in figure 4. The setup
conslsted merely of a two-dimensional open Jet wilth entrance and exit
sections displaced vertically relative to each other, arranged between
transparent slde walls, and provided wlth enclosed spaces above and below.

Dotalls of interest in the figure, In addition to the Jet
deformation, are:

(1) Separation of the flow from the upper 1lip of the exlt, because
of the large angle of entry. A small bell mouth at the exit 1lip might
have prevented such separation.

(2) The rough flow on the upper surface at the entrance, campared
with the smooth flow on the lower surface, reflects the fact that the
boundary layer approaching the entrance 1s subJjected to a rising pressure
on the upper surface and a dropping pressure on the lower surface.

(3) Because of twrbulent mixing at the free surfaces, a certain
amownt of the air in the closed chambers ebove and below the Jet is

entrained in the Jet. An equivalent quantity must be released, or
skimmed off, at the exit in ordpr that the total quantity in each chamber
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remain constant. This circulating mechanism results in the apparent
overflow at the two exit lips. The rebwrn of the skimmed-off part to
the Jjet surface can be seen at the bottom of the photograph.

Tunnel wilthout a closed exit.- Some mentlon 1s made in the subse-
quent discussion of the hypothetlcal open tumnel having a closed upstream
entrance region but no closed exit reglon, the open section thus extending
downstream to infinity. Calculations for such an arrangement (see part II)
are generally slmpler then for the actual tunnel with the closed exit,
and give very nearly the sems answer, provided that the reglon of
interest 1s much closer to the entrance than to the exlt, as 1s usually
the case. For thls arrangement, solutions with an arbitrary contraction
or expanslon of the Jet cannot exist, so that no effort need be made to avoid
them. The solution for the general msymmetrical case, however, will
show the Jet velocity downstream at infinilty to be different from the
velecity upstream in the closed part. The possibility that, in the two-
dimensional case, different pressures might be assumed on the two free
surfaces still exists for thils type of turmel, but the resulting Jet will
have a constant curvature after leaving the nelghborhood of the body.

An upstream condition for the "inf:!ni‘bely long" open tunnel and a
correction to the results of reference 8.- In many discussions of the
two-dimensional open tumnel, the set of images indicated in figure 5(a)
1s used to satisfy the boumdary conditlox that u = 0, and the resulting
flow shows en upflow in front and an equal downflow in back, with no
induced downwash at the wing itself. Actually, however, if the Jet
1ssues fram a horizontal closed entrance ~ no matter how far upstream -
it will remain essentially horizontal (because it is not subJjected to
any vertical force) until it reaches the wing. (See fig. 5(b).) In
order to eliminate the umdesired upstream upwash, a uvniform downwash
should therefore be added to the solution indicated in Ffigure 5(a).
(compare reference 7, p. 30%.) Addition of this downwash does not
affect the boundary condlitions, since u i1s still zero at the boumdary.
This case 1s discussed quantitatlively in part IT, where it is shown that
the entrance-1ip condition autamatically provides the correct answer.

Among the rectangular wind tummels for which correctlons were
given in reference 8 1s a type with closed sides but open top and bottom.
The calculated corrections for epproximately square cross sections are
approximately equal to those for the completely closed tumnel, a sur-
prising result iIn view of the absence of any top or bottom canstraint.
The result 1s actually in error, as was dlscovered in an experimental
effort to verlfy it (reference 9). In seeking to explain the errors
the author of reference 9 pointed out that the lmage system used in
reference 8 should have included an infinite row of vortices at infinity,
and he showed how, by teking into account this row of vortices, the
correct answer could be obtained. It could not be shown, however, that
the extent of this row of vortices 1s of a higher order of infinity than
1s thelr distance from the orlglin, as 1s necessary if their effect is to
be consldered. The msthod of the preceding paragraph thus appears to be
much simpler and more rigorous in such cases than 1s a discussion of the
image vortices at infinity. One simply observes that the image system




v e e — e - A

8 , NACA TN No, 1826

of reference 8 provides an angle correctlon factor & of 0.25 for the
flow far upstream of the wing, whereas & should be zero far upstream;
a correctleon of -0.25 should therefore be added to all valuss of &
camputed by this Image system for points within the tunnel.

Summary of boundary conditions.- A basic physical characteristic
of the flow is provided by the conditlon that the velocity be continuous
at the entrance 1ip, which also helps to provlide umlqueness. The
velocity on the free surface is not necessarlily the veloclty far upstream
iIn the closed portlonj in fact, for the two-dimensiomal case, 1t 1s even
possible for the pressures on the two free surfaces to be different from
each other. Equality of the velocities in the upstream and downstream
closed portions has been recognized as an additlional condition.
Neglecting the upper portlion of the closed exlt may be desirable 1f the
flow 18 so depressed that 1t does not meke contact with the upper part
of the exlt. Neglecting the entire closed exit reglion may appreclably
simplify the problem without Introducling excesslive lnaccuracy 1f the
region of Interest is much closer to the entrance than to the exit.
In general, adequate treatment of the exlt (for large 1ift on the body
in the tummel) seems very unlikely.

The dlscussion In the preceding sections has concermed mainly the
physical flow conditlons, and relatively little interpretation in terms
of bowndary conditions on the perturbatlon potential has been given,
although such formael Interpretation would appear a trivial task. The
reason that this extension has not been made is that, in a number of
Instances, as will appear subsequently, slight modifications of the basic
viewpoint, leading to scmewhat modifled boundary comditions, are desirable
for convenlence of solutlon. Accordingly, the statements of the boundary
conditions on the perturbatlion potentlials wlll be glven when the solutions

are dlscussed.

SUGGESTED ELECTRICAL ANALOGIES

Velocity-Potential Analogles -

Bagic concepts of the analogies.- In the analogies to be discussed
In the present section (nome of which have yet been constructed) , the
Perturbation veloclty potential in the space wilthin the wind tunnel is
considered analogous to the electrical potential in a dilute electrolyte
solution contained in a vessel of the seme shape. An insulating material
such as Bakelite, the conductivity of which is negligible compared with
that of the solution, provides a boundary where the normal potential

gradient % is zeroj; and a metal, the conductivity of which is practi-

cally Infinite relative to that of the solution, serves as a constant-
potentlal boundary along which the longitudinal gradient %{’ is zero.
b

In such a setup, current is analogous to velocity except for a difference
in sign (in the usual convention, current flows down a voltage gradient
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whereas air flows up a veloclty-potential gradient); in order to remove
this difficulty, the sign convention for electrical potential is reversed
in the following discussion.

For greater clarity of exposition, the two-dimensional analogles are
treated in detall, the three-dimensional analogles appearing as reasonably
obvious extentions or modifications. It will be remembered, however, that
any application will be found in three~dimensional problems, inasmuch as
most of the two-dimensiomal problems can be solved analytically.

A two-dimensional vortex may be represented by two long metal plates
peparated by a thin insulator. (See fig. 6(a).) A flow corresponding
to a vortex located at the edge of the plates is set up by applying a
difference of potentlal across the plates. If the perburbation flow
that results fram the presence of the vortex in the tumnel has a hori-
zontal velocity camponent, thls representation is no longer adequate
because it requires the potential to bs uniform along each plate. Rigor
in this case would require that the plates be composed of a number of
separate sections, with each pair separately activated. (See fig. 6(b).)
In this way 1t 1s possible to provide a potential difference between
upper and lower surfaces that is everywhere equal to the desired circula-
tion, without requiring that the potential be wmiform along the entire
upper surface or lower surface. A horizontal velocity component normally
occurs only when the 1lifting vortex 1s asymmetrlcally located in the
tunnel. For simplification, only the simpler representation of figure 6(a)
is used in the remaining sketches.

The element of 1ift in three-dimensional flow is the horseshos
vortex of zero span, which 1s the same as a semi-infinite line of doublets.
It may be represented by a palr of long narrow mestal strlps separated by
an insulator. (See fig. 6(c).) As in the two-dimensional analogy, if
the 1lifting element is asymmstrically located in the fleld the strips
must be made up of short pleces, with each palr separately activated.
The horseshoe vortex of finite spen is represemted as in figure 6(d),
provided there are no appreclable perturbation velocltles 1In its planse.

Evaluation of Interference welocities.~- The vertical velocity
component In the turmel corresponds to the vertical voltage gradient in
the electrolyte, which can be determined by measuring the voltage differ-
ence between a palr of short wlre electrodes mounted one above the other
a fixed distance apart. The tummel interference at any polnt is foumd by
measuring this voltage differencs (relative to that across the two plates
representing the vortex) first in the simulated tunnel and then in a
large tenk for which the boundary Interference is either negligible or
go small that 1t can be adequately computed by simple methods. Since
the theoretical flow field for the second case 1s known, the ratio of
these two gradients, together with the distence from the pair of wires
to the 1lifting vortex, should suffice to evaluate the boundary interfer-
ence. The distance between the pair of wires need not be measured
because only the 'ratio of the gradients 1s required. Similarly, the
exact design and dimenslons of the simulated 1ifting vortex are of no

e e ——— e T A i e s P A e T e e o
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significance, provided the gradients are determined at reasonable
distances from it. In general, boundary interference at the vortex itself
cannot be found directly by this method, but may be determined by
Interpolation between or extrapolation from nelghboring points.

Two-dimensional closed-open tummel.- For simplificetlion of the
namenclature, the open tunnel with closed upstream region but without a
closed exlt is deslgnated the closed-open tuwnel. The open tunmnel with
closed upsiream and downstream reglons is designatbed the closed-open-
closed tummel.

Figure T(a) illustrates the setup for a two-dimensional closed-open
tunnel with a vortex on its center line. Shaded lines indicate

insulating boundaries, where o _ 0, and heavy unshaded 1lines indicate
2 'a—I-L >

metal boundaries on which ¢ 1s constent. The upstream closed portion
should be so long that the potential is essentlally uniform at its
upstream end; the length indicated on the flgure should suffice. The
open region should similarly be so long that the vertical flow between
the vortex strips and the boundary strips no longer changes with distance
downstream; again, the length indicated on the figure should suffice.
From the conditlon of veloclty continulty at the entrance lips and the
fact that %i is zero alang the free bowndaries, it follows that %‘;
must be zero at the edges of the two closed boundaries. The potentials
on the two free boundaries must, therefore, be adjusted umtil the differ-
ence between the potential of each and the potentlal of a thin feeler
electrode Just upstream of its edge is zero. For the symmetrical condi-
tion shown, the single variable voltage source Indicated will provide

Zexro %:—2 at both edges simultansously.

Figure 7(b) illustrates the setup for the two-dimensional closed-
open tumnel wilth the vortex in an off-center positian. A single variable
voltage source across the two free boundarles is now no langer capable
of simultaneously satisfying the continuity condition at both edges, so
that an additionsl varieble voltage sourte and an upstream electrode
are required. The current in the closed part of the tunnel flowing into
this upstream electrode corresponds to an upstream perturbation velocilty.
This upstream perturbation veloclity comstitubtes the previously mentioned
difference between the veloclty far upstream in the closed part and the
velocity on the free surface. The concept here 1s slightly at vaxriance
with previous discussion, which considered a perbturbation velocity along
the free surface, with the far upstream veloclty appearing as the
undisturbed velocity U. As the analogy is set up, however, no pertur-
bation velocity may appear along the free surfaces because they are at
constent potential; hence, the total veloclty on the free surfaces must
be considered as the undisturbed veloclty U and any difference between
this velocity and the veloclty far upstream appears as an upstream
perturbation velocity. As appears in part IT, thls viewpoint is also
found convenlent in the analytical solution of these problems.




NACA TN No. 1826 11

Two~dimensional closed-open-closed tumnel.~ The setup for the two-
dimenslional closed-open-closed tummel with a vortex on the center line
(fig. 8(a)) is an obvious modification of the corresponding setup for
the closed-open tunnel. The same would be true for the off-center vortex
except for the necessity of satisfying the condition that the velocities
in the upstream and downstream closed reglons be equal. Thus, the setup
of figure 8(b) provides an upstream perturbation velocity but no down-
stream perturbation veloclty, and cannot, thersfore, solve the problem
completely. An additional flow, found by the setup of figure 8(c) must
be included. An electrode is here located at both the upstream and
downstream ends, and the potentials relative to the free boundary are so
adjusted that the entrance-1ip condition 1s satisfied. It is apparent
that in order to satisfy this condition the downstream current flow will
be much greater than the upstream curréent flow; that is, the downetream
perturbation velocity for a contracting or expanding jet is much greater
than the upstream perturbation veloclty. Because of this difference, a
sultable amount of the flow of figurs 8(c) may be added to that of
figure 8(b) to produce equal upstresm and downstream perturbation
velocities.

Displacement of the free surfaces.- The current density normal to
the surface of a metal plate representing a free surface is proportional

to %%— and corresponds to the local vertical perturbation velocity.
The total vertical displacement at a point on the free surface is then

given by %2 dx Integrated from the entrance lip to the point. In

y
perticular, the integral along the entire lower free surface of a closed-
open-closed twnnel represents the displacement at the exit 1lip and 1t
may be measured by means of an ammeter in the line that goes to the
lower metal plate.

If the pressure on the lower free surface can adjust itself so
that the displacement at the downstream end is zero, the perturbation
velocity at the lower surface will be different from that at the upper
surface. If the perturbation velocity on the upper surface is taken as
zero, that on the lower surface will be negative, so that the potential
on the lower surface must drop wmiformly from entrance to exit. Such a
variation could be accomplished if the lower surface were represented by
a number of short metal strips instead of a single plate.-

Three-dimensional closed-open and closed-open-closed tunnels.- The
analogles for the three-dimensional tumnels are obvious modifications of
those for the two-dimensional tummels. The free boundary may not be
simulated by a single metal cylinder because, as was previously noted,
different elements of the free bowmdary do not have the same potential,
although the potentlial is constant along each element. The free boundary
must thus be simulated by a number of longitudinal metal strips,
insulated from each other, with a feeler electrode immediately in front
of each. When the lifting element lles in the horizontal plene of
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symuetry, the entrance-1ip condition may be satisfied without an additional
electrode. If the lifting element 1s not in the horizontal plane of
symmetry, an upstresm electrode will be needed, with the potentilal of

each strip adjusted relative to this electrode. For the umsymmetrical
closed-open-closed analogy, the requirement that upstream and downstream
velocities be equal necessitates further measurements with a setup
corresponding to that of figure 8(c).

Acceleration-Potential Analogies

Bagic concepts of the analogles.- The pressure has the properties
of a potential - designated acceleration potentlal -~ in a fleld consisting
of a small perturbation flow superposed on a uniform stream. If the
pressure in the umdisturbed stream is teken as zero, then the perturbation
velocities are related to the pressure by the followlng equations:

X
-lft-gﬁdt---l—f d 2
TP X T o0 ox -~ U

- 00

where

o) density
t time

D pressure

Since, by the first equation, u is proportional to p, 1t is simpler
merely to consider the perturbation velocity wu itself as the potential,
with v and w gliven by the following equations:

v =J[YK'%§;dx
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The necesslty of performing an integration in order to determine v or w
is a basic disadvantage of the acceleration-potentlial analogy compared
with the veloclty-potential analogy in which v and w are measurable
directly.

In the analogles to be discussed in the present section, the pertur-
bation velocity u 1s considered amalogous to the electrical potential
in a dilute electrolyte solutlon. A metal serves as a boundary along
which u 1s constant, and the local intensity of current flowing into
it gives %1; an insulator serves as a boundary where g—g is zero. The
1ifting element in either two or three dimensicons is represented by a
pair of short metal plates separated by an insulator; when the upper
plate is maintained at a higher potentlal than the lower plate, the
errangement represents a thin airfoil with suction (large wu) on its
upper surface and pressure (sna:l_'l_ or negative u) on its lower surface.
The current at each of the two plates should be the same In order that
the slope of the alrfoil surface (proporbional to v) be the same on
both upper and lower sides. In order always to satlsfy this condition
the voltage source activating the 1ifting elemsnt should not be tapped
to any other electrode in the field.

Two~-dimensional closed-open tumnel.- The setup for the two-
dimensional closed-open tumnel with the 1ifting element on the center
line is shown in figure 9(a). The walls of the upstream closed region

are represented by insulators, which establish that %1 =0 at every

x
point; hence, the condition that v = f_w g—; dx = 0 at every point on

the closed bowndary is satisfied. The two free boundaries are repre-
sented by metal; end electricaelly comnecting them, as shown, satlsfies
the further condition that they have the same potential (the same ).
The flow of current into the lower boundary then equals the flow of
current out of the upper boundasry, so that the ultimate downstream
value of v will be the same on both upper and lower boundaries, as 1s
desired. In fact, for the symmetrical case illustrated, the value ’
of v will be the sams at all pailrs of opposite polnts on the two free
bounderies; so the boundaries will be everywhere parallel. No speclal
attention need be paid to the entrance 1ips - the entrance 1lip condi-
tion is autamatically satlsfied since the potential wu 1s continuous
at these polnts (a.l’chough the potential gradiemts at these points are
infinite) s

For the off-center position of the 1ifting element (fig. 9(b)) no
modification of the circuits is needed. The difference between the
potential in the upstreem closed region and the potential of the free
boundaries, which is the upstream perturbation veloclity u, ls measured
with the ald of the probe P. As in the symmetrical case, the ultimate
downstreem value of v will be the same for both the upper and the
lower boundaries; however, it is no longer true that the two boundaries
will be everywhere parallel,and the ultimate width of the Jet will be
different from the width of the closed part.
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Two-dimensional closed-open~clogsed tumnel.- The value of v at the
downstream end of the free boundary is given by the total flow of current
into the metal plate and, in general, is not zero. At the 1ip of the :
closed exit, however, v must be suddenly reduced to zero in order for -
the flow to follow the solid bowmdary; hence, a short slectrode must be
added at the exit 1lip, and as much current must be forced out of it as
flows into the long elsctrods that represents the open boundary; that is,

the Integral of du dx along the free boundary must be canceled at the

exit 1ip. The setup (fig. 10(a)) therefore shows & voltage source to
supply this current and means for measuring and equallzing the current
Tlow Into adjacent electrodes. If these additional short electrodes are
omitted, the setup will correspond to a tummel the exit sectlon of which
has been alined with the deflected Jet (fig. 10(b)) because the conditicn

that %§'= O on the closed exlt boundary would merely permit v to
remain at the value 1t had at the end of the free boundary.

For the off-center position of the 1i1fting surface, a similar setup
is used and, as before, probes In the regions far upstream end far down- o
stream are used to determine the potentlal u in these regions reletilve -
to the potentilel of the free boundary. ©Since these potentlals Ffar up-
gstream end far downstream will not be equal, an additional perturbation >
fleld must be provided such that the sum of the two fields will have the
sems potentlel in the two reglons. This additionsl perturbation fileld,
which corresponds to a contraction or expansion of the Jet, is provided
by the setup shown in figure 10(c). Tt is clear fram this figure that -
the downstream perturbation potentlal is much greater than the upstream .
perturbation potential; this result corresponds to that indicated in the
veloclty-potential analogy.

The condltion in whlch the pressure on the lower free surface 1s
higher than that on the upper free surface 1s easlly represented by
applying a voltage difference betwsen the two surfaces. {(See fige. 10(d).)
The corresponding displacement of the lower surface, however, 1s not so

readily cobtalned. The verticel veloclity at every polnt is L/\-Q—- dx, so

that the displacement at each point is L/q gE dx dx. In order to accom-
' y

Dligh this integraticn %E’ must be determined at polnts along the
¥y

boundary, perhaps by bresking the long plate into a number of short L
pleces and determining the current flowlng into each.

Thres-dimensional closed-open and closed-open-closed tumnels.- The .

analogies for the three-dimensicnal tumnels are again obvious modifica-

tions of those -for the two-dimensional tunnels. For the closed-open

analogy, the frees boundary may be represented by & single cylinder of

metal (fig. 11(a)}. For the closed-open-closed analogy, the free boundary .
must be represented by a number of separate strips (fig 11(b)) in order

that the total current Into each sirip mesy be measured and an equal
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current forced out of the short strip immediately behind it. Contraction
or expansion of the Jot 1is represented as in the two-dimensional case;
but the setup that would correspond to different pressures along differ-
ent strips seems to have no practical significance in the three-
dimensional casee.

Some form of this acceleratlon-potential analogy is probably the
most convenient for solving problems similer to that of the helicopter in
the Lengley full-scale tummel. Simply neglecting the exit, as with a
closed-open tunnel, permits the free surface to be represented by a
single sheet of metal and eliminates any measurements of curremt flow to
or from the surface. Improved accuracy should be attalnable by cutting
the sheet into two parts with two short strips at the rear. (See
fig. 11(c).) The need for many strips seems wmlikely, at least in view
of the previously mentioned uncertaln definitlion of the physical flow
in the reglon of the exit.

Correspondence between velocity-potential and acceleration-potential
analogies.- As has already been Indicated, the acceleration potential 1s
ldentical with the x~compoment of the perturbatlion velocity and is hence
morely the x-derivative of the perturbatiom-velocity potential. It is
of interest to polnt out the related fact that the acceleration potential
analogies are, In a sense, the x-derlvatives of the velocity-potential
enalogies. For example (mee fig. 12),

(1) For the velocity-potential amalogy, an infinitely long double
layer represented a 1lifting elemsnt located at 1ts forward edge. The
difference between two such double layers, of which one 1s shifted
slightly relative to the other, is merely the short double layer that
was used In the acceleratlion-potential analogy.

(2) For the velocity-potential analogy, the free boundary consisted
of constant-potential strips on which the potentlials were so adjusted
that the gradlent was zero at the leading edge. If each strip is now
shifted and subtracted, there remains a long strlp, with a short strip
at the front and back. Since, in the velocity-potential analogy, the
gradlent was’ zero at the entrance 1lip , the short strip at the front may
be neglected. The remainder corresponds to the arrangement used in the
acceleration-potential analogy, and the fact that the total current after
the subtraction must be zero corresponds to the fact that the total
current out of the short strip must be made equal to the total current
into the long strip.

(3) When the 1ifting element was off-center, the velocity-potential
analogles required electrodes upstream and downstreem, with uniform
current flow along the upstream and downstream closed reglons. That the
gubtraction eliminates these current flows corresponds to the fact that
no uﬁstream or downstream electrodes are ugsed in the acceleration-

potentlal analogless
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Technicel Difficulties

It should be pointed out that the analogies hers described may be
rether unwileldy, experimentally. 3IZven for the simplest types of analogiles,
the literature Indicates considerable wmcertalnty as to the most satis-
factory electrolyte and electrode materials, and appreciable difficulty
in balancing capacitances (alternating current is generally used in
analogles, In order to nilnimize polarization at the electrodes). In the
present analoglies, the nesed for separate current sources that are exactly
in phase and the large capacltances that will certalnly characterize the
vortex and the open-boundary representations should greatly camplicate
the technique. Perhaps the use of direct current instead of alternating
current, with nonpolarizing electrodes (as platinized platinum), would
be a more practical approach In this respect. Simultansously satisfying
the entrance-1ip condition at a number of points around the inlet (or
satlsfying the corresponding exit condition for the acceleration-
potential enalogles) may also turm out to be very difficult.

RESUME OF PART T

The most significant points of the preceding discusslon of open
wind tummels and their slectrical analogies are as follows:

1. Continuity of veloclty at the 1lip of the entrance cone is a
basic characteristic of the flow in an open wind tumnel.

2. Bquality of the velocitles in the upstresm and downstreem closed
regions is a further conditlon on the tunnel flow If extraneous longi-
tudinal pressure gradients are to be avolded.

3. The veloclty on the free surface need not be the sames as the
veloclity In the closed upstresm region. In general, the two velocities
are the same only when the 1lifting element lles in the plane of
symmestry of the tunnel.

o

4. For the two-dimensional open turmel the velocities on the two
free surfaces need not be equal. If the space below the lower free
surface is closed off, the pressure on the lower free surface will adjust

1tgelf so that the dlsplacement at the exit 1ip is zero.

5. Conslderable wmcertainty exists wilith regard to conditions at the

exlt or the mathematical equlvalents of these conditions. Correspondingly,
certain cémpramises in complying with the 1ldealized downstream conditions

may be Justified In a determination of boundary interfersnce.

6. In any analysis that neglects the closed emtrance and exit regioms,
the condition of zero upstream iInduced flow must be retained.
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T« BElectrical analogies of either the veloclty-potential or the
acceleration-potential type mey be devised to correspond to most of the
problems dlscussed.

8. In electrical analogies that represent veloclty potential by
electrical potential, the conditlon of continulty at the entrance 1ip
appears troublesome, especially for three-dimemnsional timnelsj however,
the exlt condlitlons are easlily represented. :

9. ITn electrical analogles that represent acceleration potentlal
by electrical potential, the entrance-lip comdltion is automatically
satisfied, but fulfiliment of exit conditlons 1s troublescme. Rough
approximation of the exlt conditions may, however, be adequate for many

PUrpoOses «

10. Accelesration-potential enalogles are experimentally simpler
than velocity-potential analogles.

IT - TWO-DIMENSIONAL TUNNELS

In part IT, boundary-induced velocitles in two~iimensional open
tunnels are derived with speclal reference to the effects of the closed
entrance and exlt reglons. The cases treabed are:

(1) Tunnel with & closed entrance (upstream) region but without a
closed exit region

(2) Tumnel with a closed entrance reglon but with only one exit
1ip (corresponding to a condition in which the downward deflection of
the flow is so large that the flow mekes contact only with the lower
exit 1ip)

(3) Tunnel with closed entrance and exit regions

(ll-) Seme as case 3, but wlth different pressures on the two free
surfaces

Numerical results are glven for all cases.
SYMBOLS AND DIMENSIONS

Each tunnel is ldealized as a strip of uniform height h, having a
streem velocity V, and containing a point vortex of strength I'. For
gimplification of the present development, lengths and veloclties will
be made nondimensional by dividing by h and V, respectively, and the
vortex strength will be made nondimensional by dividing by hV.

e e e e e e A — T Y W e T A e = = ———— m— —r——
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Essentially, then, the solutlions will be developed for a vortex of

strength T' = h—I;T in a tunnel of unit height; and in the following

list of symbols the lengths in the complex planes are in terms of i,
and the complex veloclties are in terms of V:

h tunnel height
v ' tunnel velocity

t complex variable of physical plane (£ + i)

gl locatlon of vortex In £-plane

Z complex varlsble of transformsd plane (x + iy)
Zq location of vortex in z-plane

q complex velocity in physical plane (u - iv)

Q complex velocity in transformed pleme (u - 1v)

A, B, C, M, ¥ real constants

T vortex streng‘bp,

re nondimensicnal vortex strength (.hLV>

qi(g:gl) induced complex velocity at ¢§ when vortex is at ¢4

a1.(&) induced complex velocity at §1

a abscissa of exit 1ip in transformed space

Wy a complex velocit:y in the form of an elliptic integral
of the first kind

Wi a camplex veloclty in the form of an elliptic integral of
the second kind

w3 a camplex velocity

1 variable of Integration

G function defined by equation (2)
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K, K' complete elliptic integrals of the first kind, with
: modvlus 1/a .
E, E! when not followed by parenthesis, complete elliptic

integrals of the second kind, with modulus 1/a;
with upper limit indicated in parentheses,
incomplete elliptic integrals of the

second kind, with modulus 1/a

¥, F! incomplete ellipitlc Integrals of the first kind, with
modulus 1/a, and with upper limit indicated in
parentheses

R.P. real pert

T.P. imaginary part

c alrfoil chord

) alrfoil 11ft cosfficient

€ tumel-induced angle, radlans

, horizontal perturbation veloclty at free boundary

Subscript

1 Induced

BOUNDARY CORDITIONS

The two-dimensional turmels discussed are considered to have thelr
fixed and free boumdaries parallel to the real axis, with the main tunnel
flow fram left to right. The physlcal plane (in which lengths and
velocities have besn made nondimensional as Just described) will be
designated the ¢-plane, with the complex perturbation velocity wu - iv,
or g(t), subject to the following conditions:

(1) on each fixed (or closed) boundary, I.P.g(f) =-v =0
(2) On each free (or open) boundary, RoP.g(f) =u =0 or a constant

(3) At each lip of the closed entrance section, g(f) is continuous
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CASE 1 - CLOSED-OFPEN TUNNEL

Total perturbation velocity. - By the transformation

-

z = otb (1)
the tumnel in the ¢&-plane , represented by an infinitely long strip of
wit height, 1s transformed to the upper half of the z-plane. The
correspondence between points is shown in figure 13.

The complex velocity (rather then the more usual camplex potential)
1s considered to be retained In the transformation, and the problem is
thus to find a function Q(z), where

u - iv = Q(z) = q(t)
such that

(1) On the closed sections of the boundary, that 1s, for z real
and |z| <1,

I.P.Q(z) =0

(2) on the open sections of the boundary, that is, for 2z real
and |z| > 1,

R.P.Q(z)

I
o

(3) For z = +1,
Q(z) =0
(4) o(z) 1s finite at infinity

; Consider the complex velocity G(z) corresponding to a vortex at zj
and its reflection at 1zj:

a(z) = 1<z } z1 2z } Z]) (2)

This function, which is of order 1/z2 at Infinlty, satisfies condi-
1 - z=,

tions (1) and (4) but not (2) and (3). Functions o6f the Fform
zyl - z2 , . « . satisfy conditions (1), (2), and (3). At infinity,

\JL - 22 1s of ovder z amd z\|[l - 72 1s of order z2; therefore,
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oither of the products G V1 - z2, Gz\/1 - z2, or a linear combination
of the two satisfies the fouwr conditlons and has a pole of the first
order at zq. These facts suggest that the deslred velocity fumectian
is of the form °

Z"'Zl

Q(z)=1(Z}ZI- L _\a+B2)\1-2 (3)

where A and B are as yet wmdetermined real constants.

The values of A and B are to be determined such that the pole
at 27 represents a vortex of strength .I'' in the ¢&-plane. Thus

r'=at) at -Pate) & az = 19a() &

where the integral is taeken about the point 2z7. By Cauchy's integral
formula

2
i ()

r' = -2(a + Bzp
21
The values of I' and 2zq are known, so that this camplex equation
cen be solved for the two real constants A and B. Substituting
these values in egquation (3) will thus give the desired complex velocity
function. .

Tumel-interference velocity.- The tumnel-interference velocity is
defined as the difference between the total perturbation veloclty q(g)
due to the presence of the- vortex In the tumnel and the velocity due to
a vortex in an unbounded medium. That is, the tummel-interference
velocity qi(t,81) is

altt) =172 - 7hg) G+ 2 ey ©

1

If the vortex is on the axls of the tunnel, that is, if &y = &5 + 55

then from equation (1), z7 = iy1, =2nd equation (4) gives
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, (6)
I

B =~
2/1 + ¥1°
i

If the point of evaluation is also on the axis (that is, { = & + 5

whence z = iy), then

i, 1 71 2 + 1 ip!
qi<§'|— §l+'_> = "'il_" - + (7)
2’ -2 y2 - y12 y12 + 1 21):(5 '§]>

Thus, if the vorbex 1s om tne axis, the interference velocity at all
points on the axis has only a vertical camponent.

The interference veloclty at the vortex 1tself 1s the limit of
expression (5) as 2z approaches zj. The term containing z - Z3
offers no difficulties and i1ts 1imit 1s readily evaluated:

’ r''z
1 vV 2 1 ) 1
- + - = - + - =
1im (A Bz)V1 ‘z ry (a Bzq )Vl 2] I

vhere the last equality follows from equation (4). The remainder of
equation (5), after x(l¢ - {1) is replaced by 1log -ZZI’ is

Tt
A+Bz\/l-z210 Z 4+ (z-3
a+B)V1 - 22 o =1(- ) 83 P32 - %

z Z
z - 21 2 log = (2 zl)log z

This expression is of the fom% for z = z7. Differentiating numerator

and denominator, according to L'H6spital's rule still leaves both equal
to zero at z = zj (that the derivdtive of the dencminator is zero

at z = 27 1is obvious; that the derivative of the numerator is also

zero at z = z7 can be verified with the aid of equation (4)). A second
differentiation yields the following expression for the limit

as z approaches zq:
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2(A + Bzq)z 2
-(A + Bzg)V1 - 215 - .\/__1_2_1 + 2]3z1V£ - 272
1l - zy

2zl

i

This fraction can be greatly simplified by use of equation (4), and the.
result, added to the previously derived limit, gives the desired correc-
tion at the vortex:

= = 1 - 2 FlZ]_
giizll q5(¢,61) = q4(€a) i[ + 2(1 - z12) + ]-3\/1 21° + hiy]_] (8) .

For the special case in which the vortex is on the tumnel axis (z = iy) 5
this expresslon reduces to the followling form (after substituting for 3B
from equation (6)): °

_art a2
91<§ 2 1+ ylz (9)

Upstream perturbation wvelocity.- If the vortex is not on the tummnel

axis, A will not be zero (compare equation (6)). The tunnel interfer-
ence veloclty far ups'bream in the closed part of the tumnel is foumd by
putting ¢ = - and z =0 in equation (5), which then reduces to

1 1 2Ay1
o (- ) = 1“(;,;—1 -Z>=-TZET2 :

which 1s rsal. For this unsymmetrical case, therefore, a finite longi-
tudinal perturbation velocity is found far upstream in the closed paxrt.
As was pointed out in part I, such results appear because the problem
was set up so that the longitudinal perturbation veloclity on the open
boundary is zero. If the velocity far upstream in the closed part is
to be taken as the base, the result means merely theh the langitudinal
velocity on the open boundary exceeds this base velocity by -—E—AJ-%-
Zl .

that there is a corresponding Jdifference in pressure between the closed
part and the space surrounding the jet.

and

e e . ————— e R o R e T s A A T o s o oo b e e o e 7 v 4 e — ———— ———
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Limiting case of completely open tunnel.- With increasing distance
of the vortex fram the closed entrance (that is, with increasing yq),

1
expression (9) approaches - %- As was pointed out in part I, the

Image system normally used to satisfy the boumdary condition on an

infinitely long, open, two-dimensional tunnel produces no induced flow
at the vortex 1tself, and only after introduction of the additiomal _,
condition that the upstream flow be horizontal is this value of - %—-

for the induced-flow correction obtained. In the present development ,
however, it 1s seen that the condition of continulty at the entrance
lips automatically tekes care of this condition on the upstream flow
directlon, even when the entrance and the vortex are infinitely far

apaxrt. ) )

No further discussion of the campletely open tumnel will be glven
here Inasmuch as this case has been adequately treated by the method of
images. (See reference 6, p. 302.)

CASE 2 - TUNNEL WITH ONE FIXED EXIT BOUNDARY

Perturbation velocity.- As before, the transformation z = on b

transforms the tunnel, comsidered as an infinite strip of unit height,
into the upper half of the z-plane. The correspondence between points
is shown in figure 14. The conditions on the camplex velocity Q(z) are:

0 for -1 <z <1 and for z >a

(1) On the real axis, I.P.Q(z)

(2) On the real axis, R.P.Q(z) =0 for z <-1 and for 1<z <a

(3) For z =41, Q(z) =0

(4) Q(z) is finite everywhere in the upper half-plane except
a and at z = z3. As noted iIn part I, Q(z) will be infinite

at
at a

nu

z
pA
The function G(z), given by equation (2), will again be used as a
factor that 1s real along the entirse real axls and has the desired type

- 52 - g2
of singulerity at 2zj. The functions \/H and z\/i—_—% change

from pure real to pure imaginary as =z passes through *1 or through a,
and, furthermore, are zero at 2z = t1 and Infinite at z =a. A%

InfInity they are of order zl/2 and z3/‘2 » respectlvely. Therefore,

- o2 -
L-2 ona G(z) l-z
a -z a-z

as before, a linear combination of G(z
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satisfies the preceding conditions and has a pole of the first order
at z1. Q(z) is therefore of the form:

Q(z)=i<zl - =t (,A+Bz)i:—:2_ (10)

-2z1 zZ -2

The real constants A and B are determined by the same condition as
before, which gives

2(A + Bzq) /1 - 21?

L I, '
r= Zq a - zj : (12)

Tunnel-interference velocity.- The interference velocity gy(¢,¢q)

1s the difference between the perturbation velocity and the velocity due
to a vortex located at the sams polnt in an wmbounded medium:

a1(8,61) = 1(z . il Zl)(p. + B2)\[X Lo : 21((211: ) (12) ’

This expression does not simplify appreciably if the vortex 1s located
on the axis, and the interference veloclity at a point on the axis due
to a vortex on the axis 1s not normal to the axis.

The Interference velocity at the vortex itself is the 1limit of

expression (12) as =z approaches zj. ZProceeding as in the preceding
case gives:

_ [— r' I'a 1- z1° P'é;]
93 (8y) = iE(l ) e B\/a e ovesy (13)

It may be shown with the aild of equation (11) that this equation reduces
to that for the closed-open tunnel as a goes to infinity.

CASE 3 - CLOSED-OPEN-CIOSED TUNNEL

Perturbation velocity.- The transformation 2z = e transforms the

tunnel space into the upper half of the =z-plane with correspondence
between points as indicated in figure 15. The boundary conditions on
the complex velocity Q(z) are:

e e e T T e e i o+ e - - e ——— e —_—
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(1) On the real axis, I.P.Q(z) =0 for |z| <1 end for [z| >a

(2) On the real axis, R.P.Q(z) = 0 for 1< |z|<a

]

(3) For z =*1, Q(z) =0

(4) Q(z) 1s finite everywhere in the upper half-plene except
at z =18 and at z = z3

(5) Q(0) = Q(w), (this equation corresponding to the condition
noted in part I that the perturbation velocities in the upstream and
downstream closed reglons be the same) .

The function G(z) given by equation (2) is again used as a factor

- 52 - 52 - 52

of Q(z). The functions Il z z 1 z and 22 z satisfy
2 27 2 2’ 2 2
\(a -z a- - z a” - z

conditions (1), (2), end (3), and are of orders 1, z, and 2 at infinity,
reepectlively. By the same reasoning as before,

_ i1 oy, L - 22
Q(z)—i(z_zl Z_EJD(A+Bz+Cz) SR (k)

The condition that the pole of the first order at z; represents a
vortex of strength I'' is:

oo - 2(A + Bz + Cz12) /l - 23° (15)
27 . a® - 212

Condition (5) is satisfied by equating the two forms of equatioa (1h)
for 2z equal to zero and equal to infinity. Thug

1 1
w2032
_°2y1 A
“mf? e
-2 - 52
1im Q(z) = im IL (o + Bz + sz)\g
Z 500 22® (z - z1)(z - Z1) a” - z

= -2y31C
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whence, by condition (5)

-2y
oxr
A -
C = a|z1|2 (16)

The complex equation (15) and the real equation (16) suffice for
evaluating the three real constents A, B, and C in equation (14).

Twnmnel-Interference veloclty.- The tumnel Interference veloclty 1s

n = 1ty - e od) g e ariiy Gn

-z z-'%Z

If the vortex is on the tunmel axis, that is, if z; = 1yj, equation (15)

glives
ﬁ
B - - P ,a? + yl?
2 1 +'y1?
: : f (18)
A
C =——
y1?
S

Comparing this last equation with equation (16); which reduces to ‘the
following form for 2z = iy,

e e e e e s e
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since, as is clear from figure 15, a # 1. The interference velocity at
a point on the axis (z = 1y) due to a vortex on the axis is thus

I\
t 2 2 1
asidipd )= - I P Sl (19)
2 2 372'5’12 a2+y21+y12 on(e - £7)

which is normal to the axis.

The interference veloéity at the vortex 1tself 1s the 1imit of
expression (17) as z approaches 2zj. Proceeding as before glves

+ (B + 20z1)\]‘ - + I

r ! 212 &2 1
al 212 hiyq

2ty )= 1 T+ [ - leS(ZlL D)

(20)

For the case in which the vortex is on the axls (23 = iyy) the
normal velocity at the free boundary ( Z =X, where 1< x < a) 1s glven

by

-2
Q(X) B 1(3: -liyl i x +liy)>Bx\2.—2 -z

ox) = —TL 5 2 -1 (21)

or

CASE 4 - CLOSED-OPEN-CLOSED TUNNEL WITH UNEQUAL

PRESSURES ON THE FREE SURFACES

Boundary conditions.- As Indicated in part I, the two-dimensional
closed-open-closed tumnel may develop unequal pressures on the two free
surfaces if a closed space exists below the lower free surface. Within
the limits of the present linear theory, thie pressure difference corre-
sponds to superposing on the flow discussed in the preceding sectlion an
additional perturbatlion velocity field Q(z) that

(1) Has no singularitiee within the tunnel

(2) Satisfies the condition of continuity at the inlet lips

o e ———— -
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(3) Has a horizontal component equal to, say, +1 on the upper free
boundary and -1 on the lower free boundary
(4) Has no vertical camponesnt on the-clesed boundaries
(5) 1Is zero at infinity upstream and d.ownstream

Rewritten as conditions on the complex veloci'by Q(z) in the z-plane
(fig. 15), these conditions become

(1) Q(z) has no singularities in the upper half of the z-plane
(2) a(z) =0 at z =%*1

(3) On the real axis, Q(z) = -1 for 1<z <a, and Q(z) = +1
for ~-a <z «-1

(4) On the real axis, I.P.Q(z) = 0 for |z| <1 and for Izl >a
(5) Q(z) =0 for z=0 and for 2z = w .

Outline of method.- Consider the followlng two fumctlons of 2z:

o TR

2 _ 2
| A
OoYl-z

They can be considered as camplex velocitfes having the following
properties along the real axls (compare reference 10):

wy 1s real between 1 and -1; between 1 and a, or between -1 and -a,
its real part is constant but an imaginary part is introduced; beyond a
or -a, the imaginary part 1s constent while the real part approaches
Zero, R'POW:L(Z) = ‘RoP-Wl( Z)’ -PoW’l(Z) oP-W’l( Z)

has the same propertles as w; except that beyond a and -a
its real part approaches o and -e, reapectively
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Maps of the two functions are shown in figure 16. It should
obviously be possible to find & linear combination of these two fimc-
tions, Mwy + Nwp, such that for 1<z <a

R.P.(Mwl + W) = -1

for ~a <z <=1

R.P.(Mwl + Nw2> = +1
and beyond a or -a

I.P.(Mwl + Fwp) =0

A simple additional fumctlion to be discussed subsequently i1s needed
to satlsfy the condition at infinity. The deslired veloclty function for
the closed-open-closed tunnel with wmequal pressures is thus of the form:

Q(z) = Mwy(z) + Twp(z) + w3(z)
The constants. M and N are derived In the two following sections.

Evaluation of Integrels.- In the following development, the modulus
of all the elliptic integrals is 1/a; the modulus will therefore not be
indicated iIn the symbols. In the d.esignations for the Incamplete
elliptic integrals, E, E' F, and F the terms in parentheses are the
upper limits of integra'bion. Then

| 7=

2

: 1
W% (1) = R.P.wy(a) =[ a2 - 22 dz = aF
2 o V1 - 22

which by the substitubtlion z = (a - ) reduces to

w1(1) = R.Pewqy(a) =

ke

|
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a
f a2-Z2d_Z
1 1 - 22

which by the substitution z° = a2 - (?2 - 1)12 reduces to

U}

I.P.wpy(a)

1 2 -1p
22
ia di

o0

* dal
ia/ 5 - la > dz
_ 92 L ac - 1.2 -
0 \/(l Z)(l — 1) 0 1 A

a

iaK' - iaE'

Solution of simulteneous equatlons for M a.%d Ne- With the aid of

the four formules Just derived, the two previously mentlioned equations
In M and T may be written

Mg+ FeE = -1
a

%K' + NaK' - NaE' = 0

which are easily solved simultansously for M and N. By introducing

the following relation between the complete elliptic Integrals (refer-
ence 11, p. 520)

EK' - RK' + KE' =2
2
the expressions for M and N are finally obtained in the following
forms:

L

_ 28 |t
M== (' - BY)

t
§=-2X_
an
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Value of Mwy + Nwpo at infinity.- The constents M and N have

been determined so that I.P.(Mwy + Nw2) =0 at infinity; furthermore,
R.PMwy =0 at Infinity, as 1s clear from figure 16. Therefore, the
value of Mwy + Nwp at infinity is merely RePellw> at infinity. It

. 1s necessary to investigate this limit before choosing the form of w3,
because, as was previously noted, the purpose of w3 18 to
provide Q(z) =0 at infinity. The 1imit may be written

l [
_ 2 _ 2 ,’ae_zz
R.P.NwE(w)_NL \gu+nl T dz

The first term is simply NaE. In order to evaluate the second term,
substitute 2z =%

2 _ 2
Nf a'; az
& 1-~-23z
o
_Naefl\’—-—l - 7'2.@-_7'
0 Va2 - 32 2

Na2 1 CL — 7'2) g
[, i

1

ey, e

The first term is -NaK. In order to evaluate the second term, 1t is
noted (reference 12) that

a Ve - 22 - 2
a1 ;

12\/(1 - ?)(e2 - ) ' \/(1 - 2)(a2 - 12) ' V@ - ®) (2 - 22)

- ———— - e e et —— e - e e e s

. AN
I
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Transposing terms in this equation glves

P\ - 12)(a ~2) - 12)(a - 12) Vi --12

_% VG - 2)(e2 - )

whence

Nazj; l 2 \(z - 7,2)(51 - 12) f V(- zejzaa - 2)

_1?\/(1 - 22)(a2 - 1) ‘l
i 0

= NaK - NaE -

,,V(l - ze)ga? - 12) lz

i

The first two terms on the right are exactly canceled by the two terms
previously obtaelned, so that the final result is:

‘ =711
lim R.P.Nwp(z) = Lim _R\l(l - 12)1(,52 - 2)
50

Z—>c0
2
= Lim NzJ(l - %)(1 - —12->
72— Z Z

2
= ljJIl NZ - E(& + l)‘ ® o
7 —>c0 z 2

/
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Derivation of W3e= In order to cancel the effect of the

terms Mwy + Nwo at infinity, the function w3 must approach -R.P.Wwo(z)
as z Iincreases without limit. In addition, 1t must have no singularities
in the upper half of the =z-plane, it must satisfy the condition of com-
tinuity at z = 1, it must be a pure real on the fixed boundaries and a
pure Imaginary on the free boundaries, and it must be zero at z = 0.

It 18 readily formulated as

2
W3(Z) = -Nz _]_.é_zé_
a - z

That this functlon satisfles the first condlition 1s readily shown by
writing 1t In a slightly different form and expanding the radical:

1im -Nz \j_—
Z—>

lj.m.-NZ- “ e s
z-> ©

Camparison of this expression with that for lim R.P.ng(z) shows that
Z—>®

the difference between the two expressions approaches zero as =z

approaches Infinity. That the fumction satisfies the remaining conditions

is readily verified by inspection.

The complex velocity functlon for the closed-open-closed tunnel with
e qual pressures is, finally,

a(z) =%§(K' - EY)

I o

z
1 2 _ 1 - 52
w2 EF L @
at fo f1-2 ar - z
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or

o) = 2 - w%(e) - Bu) + B o L (23)
ae

where the modulus of the elliptic integrals is 1/a.

Induced velocity on the axis.- For the special case in which z = iy,
the preceding equations for Q reduce to a samewhat simpler form. The
procedure will be only outlined here, inasmuch as the manipulative steps
are similar to those already described.

Replac z with iy In the expression for wj and then substi-
tuting y2 = %27 - 82 reduces the first term to

Bl - gy x! - Flf—x
T

\‘l+§

The same substitutions, together with the previously described technique
from reference 12 reduces the second term to

_2K'ly fi+ g2, K:_Fx<__1__ o g — L

7T 2
a2 2 a2

a
a!

The third term is found dlrectly as

21K' (1 + y2
.8.211?

+ B e (2k)
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Normal velocity and normal displacement at the free surface.- The
normal velocity on the free surface may be written in the followlng form:

I.P.Q(x) = Eﬁ_i(Kf - Er)‘f . ix _
= Ve 06D

X
1__— e ————
_ 21! g2 4. _ 2iK' (22 -1
% x* -1 825 V =

By the substitution of x° = a2 - (a2 - 1)12, the integrals are readily
reduced to standerd forms of incomplete elliptic integrals , and the
equation tekes the form

I.P.:%(x) - %IEE‘F,<£§_-_X_2> - Kl:gl(ﬁz - 3.2] - 2iK! Ix2 -1 (25)
<x<8a a- - a- =

XL
ax \’ =
yt -2

The normal displacement, or distortion, of the free surface is
found by integrating this expression along the free surface in the
physical plane:

X

Normal displacement at x = [ I.P.Q(x) at
1

=j;x I.P.a(x) i—;

The integral may be evaluated numerically; however, the third term
of TI.P.Q(x) is amenable to analytical treatment:

=_21K"/‘.x 2 -1 4y

aPx? | 1__;1_22__

_?_ig' E:: _Et<’:_2_:._f2_] .
2 - 2

3 (5=E )

BIR
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At the edge of the exit 1lip, where x = a, this expression reduces to

21K'< ' Eﬂj)
- B! - =
72 a2
NUMERICAL RESULTS

In the following sections are described some numerical results that
were caomputed by the preceding equations in order to show the magnitudes
of the entrance and exit effects. It will be noted that, since the
complex veloclty has been made nondimensionel by dividing by V, the
component v is identical with the twmnel-induced angle ¢, In radians,
and the component u 1s the fractlonal increase in the horizontal
veloclty. The equivalence of the two ordinate scales indicated in the
plots of the results follows fram the equation

v 2

Closed-open tunnel.~ Inm figure 17 are shown calculated values of

the induced downwash angle along the tunnel axis for varlous positions
of the 1lifting vortex along the axis. The flgure shows that for §_l = 1.0

end 1.5, the induced angles at the vortex itself (£ = 1.0 amd 1.5,
respectively) are almost exactly %, which 1g the value for an infinitely
long open tunnel; and, furthermore, the two curves are symetrical about
the point € = §1. In fact, within the accuracy of the plot, these two
curves are identical wlth the curve for an infinitely long open tumnel.

It may be concluded that the closed entrance has no effect 1f the vortex
is more than one tunnel height from the entrance. For £; = 0.5, which

is a more likely location of the wing, the induced veloclity at £ = £,

is 0.48I'", and the curve is no longer exactly symmetrical about the

point ¢ = & ; however, these differences from the conditions for the
infinitely long open tumnel are too small to be practically significant,
so that the usual infinite-open-tunnsel theory i1s stlll adequate

for &1 = 0.5. For &y 1less than 0.5, the deviations from infinite-
open-tunnel theory become larger rapidly, until, when the vortex is in
the plane ¢f the entrance (51 = O), the induced angle at the point & = 5

isonly -I'Et:

A similar discussion applies for the vortex in the closed portion
of the tunnel (¢; < 0), although this case normally has no practical
significance. For &3 = -1, the Iinduced angles in the nelghborhood of
the vortex are practically identical with those for an infinitely long
closed tunnel; however, in the open region (¢ > 0), the curve i1s consider-
ably different fram that for the infinitely long closed tunnel (shown as
the dashed curve in fig. 17).
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Symmetrical closed-open-closed tunnel.- In figure 18 are shown
similar curves for a symmetrical closed-open-closed tumnmel of which the
length of the open section is 1.5 times the tumnel height. All curves
show a sharp reduction in the induced angle as the closed exit is approached
and entered; however, for £ < 1, the closed exlt has practically no
effect on the induced velocilties at and upstream of the vortex. The
Induced angle at the vortex decreases rapidly ag the vortex moves down-

stream from about &7 = 1.0, and is %7 in the plane of the
exit (€1 = 1.5).

Closed-open-closed tunnel with one exit 1ip.- Figure 19 shows
results for a tumnel similar to that just discussed except that one exit lip
is omitted. The two curves shown are very similar to the corresponding
curves for the symmetrical comdition. As was pointed out earlier, the
horizontal component of the induced velocity on the axis 1s not zero for
this wmsymetrical configuration. Values of this horizontal component
have been plotted In filgure 20 for the same two vortex locatioms as in
figure 19. The values are seen to be very small in the forward part of
the tunnel but became guite large In the neighborhood of the exit lip.
The effect is consistent wlth the concept of the exit 1lip as a concen-
tratlon of vortices having total strength equal and opposite to that of
the bound vortex and serving thereby to turm the air back to its original
direction. The fact that the two curves ave practically identlcal lends
further support to this viewpoint.

Comparison of the three tumnel types.- In figure 21 are compared
the induced-angle curves for £7 = 0.5 and 1.0 for the three tumnel
types Just discussed. It 1s seen that the differences are slight up to
about & = 1.03 beyond this value the curves for the closed-open tumnel
continue to rise, while the others descend repidly. The effect of the
closed exlt is somewhat larger for the tunnel with two exit 1ips than
for the tunnel with ome exit 1lip. Although the induced engles become
slightly negatlive in the downstream closed region they eventually retwrn
to zero.

Symmetrical closed-open-closed tunnel with unequel pressures on the

two free surfaces.- By means of equation (24) calculations were made of
the Induced verticel velocities on the axis of a closed-open-closed
tummel of Jet length equal to 1.5 times the tumnel hel t and ha

equal and opposite horizontel perturbation velocities on
the upper and lower free surfaces, respsctively. The results are plotted
in figure 22. The curve shows that the vertical veloclty component (or
the induced angle) has an almost linear variation along the axis, which
corresponds to the falirly wmiform curvature of the Jet that would be
expected to result fram the pressure difference between the upper and
lower surfaces. For this same condlition, the integral of the normal
velocity along the free surface. (equation (25)), which is the downward
displacement of the Jet boundary at the exit 1ip, was found to

be 3 089'llb .

e ———————
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For a vortex T'' located at &1 = 0.5 in the equal-pressure case,
the integral of the normal velocity along the free surface (equation (21)),
which 1s proportional to the upward displacement of the jet boundary at the
exlt 1ip, was found to be 1.20I''. Accordingly, zero displacement at the
exlt, corresponding to the existence of a closed space above or below the
Jet zreference 2), will result if the flow described in the preceding
Paragraph 1s superposed on the equal-pressute flow in such proportion

that 3.8911-b = 1.20["; cthat is, %Ib-} = 0+.31. The corresponding effect on
the induced angle at £ = &7 1s found as follows: at ¢ = €1 = 0.5, er

for the equal-pressure case (fig. 18) is 0.48. Fram figure 22, XL at

€ = 0.5 for the unequal-pressure case is -1.hlt. Since 0.31 X -1l.44 = -0 A5,
1t is seen that, if spillage at the exit 1ip is prevented, the induced
velocity in the region of the vortex is nearly eliminated. A similar
comparison of the slopes of the curves in figures 18 and 22 in the
neighborhood of & = 0.5 shows that the induced curvature in the reglon

of the vortex is also nearly eliminated.

Résums of numerical results.- The induced angle at the 1ifting
vortex 1s essentlally that for an infinite open jet 1f the vortex is more
than half the twmnel height from the entrance and the exit. The induced
angles for case 2 (one fixed exlt boundary) are nearly the seme as for
case 3 (symmetrical exit), so that any failwre of the flow to contact the
upper exlt 1ip should not appreciably affect the tumel correctiom.
Finally, for case 3, 1f enough of the different-pressure flow i1s added
to assure zero displacement of the free boundary at the exit (that is,
if splllage at the exlt 1s prevented, as by enclosing the space into
which the spillage would normally occur), the induced angle at the
vortex may be mearly eliminated.

IIT - CIRCULAR TUNNELS

In part IIT an outline 1s given of a genmeral method for calculating
‘the boundary effect in an open circular tumnel of finite Jet length.
The solution, involving expansions in Bessel functions, is scmewhat
similar to the solution for a closed circular tummel (reference 13),
but is constructed so that it satisfies the condition of wmiformity of
Pressure over the open.boundary and also the condition of continuity of
veloclty at the entrance 1lip. Numerical results are given for a lifting
element on the tummel axis.

Uy e e e e —— oy —_— e m e e
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STMBOLS

£, 1, ¢ rectanguil.ar coordinates in units of the tummel radius
with origin at 1lifting element (see fig. 23)
E, p, O cylindrical coordinates (see figo. 23)
a, b E-coordinate of entrence and exit 1lips, respectively
B variable of inteération
q variable of integration (see reference 13)
do disturbance potential associlated with body (or with
vortex system)
) ) tunnel-induced potential
‘DC tumel-induced potential in closed circular tumnel
op residual potential(® - ¢¢)
In Bessel function of the first kind of order m
u constant longltudinal pexrturbatlion veloclity on free surface
gi(l) (&) n? Fourier sine coefficlent of ?
p p=1
gm(2) (g) mth Fourler cosine coefficient of g%
p=1
hmn('j) nt® coefficlent in series for gm(J) (e)
Yem 8™ zero of Jp' (not including the zero at the origin)
rm(l) n Fourier sine coefficient of - E(%—-;;ﬂ
p=1 '
rm(e) mth Fourier cosine coefficient of - —S-——)-a q)g; ke l
p=1

5 tumnel-induced velocity paramster < :—TT —“R—§L9ﬁ>
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p density of fluid
L 11t of 11fting element
w tunnel-induced veloclty normal to the En-plene
v free~stream velocity
R tunnel radius
ANATYSIS
Introduction

In the analysis of the three-dimensional, clrcular, closed-open-
closed tunnel, an appreclable simplificetlion results when the twnnel axis
lies in the plane of the horseshoe vortex. For off-center locations of
the horseshoe vortex, or for a source-sink body on the axis, or for the
general unsymmetrical disturbance, certein complications arise that are
related to the fact that the pressure on the free boundary is then not
equal to the pressure at +o In the closed parts of the tumnel. That
is, for these cases, 1f the net perturbatlion veloclity 1s zero far
upstream and downstream in the closed parts of the tumnel, a constant
longitudinal perturbation velocity w# O will exist on the free surface.
(See parts I and IT.) ' A similar complication results for a source in a
campletely closed tumnel.

The analysis described in the following section 1s applicable
directly to the case in which the tumnel axis lies in thé plane of the
horseshoe vortex and for which the longltudingl perturbation ¥elocity on
the free surface 1s zero. (See part I.) Tn the succeeding sectlon are
derived the additional terms needed for the solution of the more general
problem. The significance of the titles of these two sections will
became clear in the analysis.

Cylindrically Symmetric Term Omitted

Boundary conditions and formal expression for ¢p.- The solution

is developed in cylindrical coordinates (§,p,0) where the E-axis
coincides with the tumnel axis end 6 1is measured from the horizontal
plane. The relations of these coordinates to the rectangular coordi-
nates (&,Mm,{) are indicated in figure 23. The distance variables ¢, 7, ¢,
and p are conslidered 1n units of the tunnel radius. ‘

Iet ®g(&,0,0) be the disturbance velocity potentlal associated
with the 1ifting body in wmlimited space (in particular, the velocity

e N s e w e mmamp m v e e ——
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potential of a horseshoe vortex). It is desired to find a fumc-
tlon <I)>(§,p,9), harmonic inside the cylinder p = 1, for which (see
part I

3% + @) ‘Dg‘:q’) =0 (t<a, £ >D)
p=1

=0 (a <t <?)

B(qao; o)

where the region & <a, &€ >b is the closed portion of the tumnel
and a < £ <b is the open portion of the tunmel. In addition, according
to the condition of continulty at the entrance 1ip (part I), the

derivative %‘—D must be continuous at £ = a. The function ¢ is
P

p=1
then the velocity potential of the additicnal flow due to the tunnel
boundary. ’

The function ¢ 18 convenlently comsidered in two parts:
o=14dc + &
where ¢z is the known tunnel-induced potential for the same vortex

gysten In a completely closed clrcular tumel (reference 13). The deter-
mining conditions for @) are then

p=1

(1) A%y =0 (p <1)

(2) %j—"‘ =0 (¢ <a, &£ >D)
p=1

(3) %Z& =—M98T+_.¢g). (a<§<'b)
p=1 p=1

o9

W 5| = (¢=e)

p=1
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The function ®p may be expressed formally (see reference 13) as

o b
g [mme - 1;31:‘):2 dq fa en ™ (B) cos a(s - &) as

b )
+ cos mB%jL) —i%(j;%%y . gm(z) (8) cos g(B - &) dB] (26)

where gm(l)(é) and gm(e) (¢) are, respectively, the m® sine and

coslne coefficients of the Fourler serles for S A and q and B
p
p::
are variables of integration. The integrations over B ‘would, in
general, have the range -o %o -+w; however, condition (2) shows that

the functions (J)(B) J=1, 2, are zero from ~-» to a and from b
to +w. The convergence of 'bh.is function and 1ts derivatives to the
desired function 95 and its derivatives 1s discussed in the appendix
of reference 13. A modification 1s necessary because of the disconti-

nuity in %‘3 that may exist at & = b. For this case, the desired
P |a=
p=
convergence may be proved for regions bounded away fram the
circle p=1, £ = Do

The assumptlon of zero perturbation velocity on the surfgce of the
+
Jet is equivalent to the assumption that the expansion of ——(q&-g;lgll
p=1

in a Fourler serles in 6 conbtains no term independent of 6. For this
resson no m = O term appears In expension (26). The next section
discusses the samewhat special treatment that is required when the
Fourler serles contains a term independent of 6.

Evaluation of gm(J) (&) o- The function &3 glven in the preceding
equation satisfies c tions (1) and (2) regardless of the precise form
of the fupctions gp )(g) It is now desired to find the func-
tions gp'd) (&) for a < & <D such that ® will satisfy conditions (3)

and (4). To this end the Punctions are represented by infinite series
of the form

el (&) =1 (3) sin X ti-8. > 1, (3) sin ni= =2 (27)

n=1
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Since &n(J) (a) thereby equals zero, condition (4) is autamatically

satisfied. Values of gy ¢J)(b) are here assumed to be finite, instead
of infinite (see part %‘ the corresponding Inaccuracy, however, is
considered to exist mainly In the Iimmediate region of ths exit

1ip (&=b,p=1) -

Substituting this series in equation (26) glves

op = > > ﬁm(l)f’mn(g,p) sin 8 + bun®)Bn(t,p) cos mﬂ] (28)

m=1n=20

where

_1 [7 Fu(ieq) fb B -8 )
Pmo(é,p)—ﬂ o mdq . sin-éb_acos a(B - &) ap

and, for n # O,

© g (ipq) b -
1 -
Pun(&,0) =;]0 —r(—yiq?m 19 & sin rm:g;_ 2 cos g(B - &) aB

a

In the evaluation -of these two expressions, the imner integrals may be

found analytically and the outer integrals, which converge rapldly, may
be found numerically. It 1s possible, however, by means of contour
integration similar to that discussed in reference 14, to transform the
Infinite integrals into Infinite series that are more convenient for the
present purpose. The contowr Integration and the resulting infinite
gseries are given in appendix A.

Differentiating equation (28) with respect to & and taldng p = 1

glves
= = op,_(&,1)
E § {h (1) sin mo —m

P=l. @ =1n=0

30y
dF

(29)

+ hmn(z) cos mf ___Bnggé,l)}
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The constants hmn(J) are to be determined sg that condition (3) is
o + 0
satisfled. For this purpose the function --—L—QSE—JZI is expanded

in a Fourier series in 6:

(¢ + -
- —(%g—fc-llpd = mi 1l:rm(l)(é) sin mo + rm(z)(ﬁ) cos m9:, (30)

Equating coefficients in equations (29) and (30) in order to satisfy
condition (3) then gives :

p=1

v (D (8) = ; by (IZmED) ()

It 1s assumed that the funcfions pm(J)(g) can be satisfactorily approxi-
mated by a finlte number of terms of these series. This assumption seems

OPy, (&,1)
reasonable, inasmuch as is bounded as =n approaches infinity

(see appendiJBB) and hmn(J)approaches zero as n approaches infinity.
Thus,

v (D (e) zﬂi hl!m(J) Sm{t,1)

The functions pm(J)(g) and QEE%%ELEI are camputed at a set of

voints {¢;},1=0,1,2, . . . I, wiere I2N. The coefficients Ly, (d)
are then determined (method of least squares) so that the expression

I
i} 2
§ Em(a)(gi) - g n () 3%{1%&&1}
1=0 "

is & minimm for all values of m and J. For each palr of values of m
end J, this condition gives N + 1 equations for the N + 1
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unknowns hmo(‘j), hml(J). . th('j), as the N + 1 partial derivatives
with respect to hmn(J) must be equal to zero. These equations are

E Em(J) (1) aia_ﬂfg(g_in_]i - an:o (3) aPmn(gi’l) aPmk(Ei:l)]
1=0

(k=0,1,2, « . . W)

Remarks on the computatins. The points {Ef and the valus of N
are chosen so that the addition of more points and increasing the wvalue
of N will no longer appreciably affect the results. It 1is clear that
the point & =D camot be used and that care must be taken mot to
choose too large a proportion of the polnts {ﬁj} iIn the neighborhood
of € =a and £ =b; any such attempt to describe more accurately

the infinite values of gp({J)(g) at & =b or of its derivatives
at € =a aend € =b with a finilte num.‘?e of coefficients will cause a

large error in the approximations to (8) elsewhfere in the inter-
val a <t < b.

Since the functlions (J)(g) rapidly approach zero as m approaches
infinity, the preceding equations ne?d be solved for only a small number
of values of m. The values of 3 thus obtained can be ;zsed. to

give an approximation to the f1mctlon os (equation (28)):

05 = > > Em(l)rm(a,p) otn 0 + b Bn(t,0) cosmﬂ (31)

m=1ln=0

Any desired interference veloclty may now be obtained by differentiating
this series term by term and adding the results -to the corresponding
interference velocity for the closed tuwmel.

The vertical induced velecity in the plene of symmetry is simply

3% _ 198
\ t=0 P30 |gp

for paints on the right side of the tumnel axis, or

a%_ 1 oty

\§=0 R lG:—n

for polnts on the left side of the tummel axis. Inspection of equa;bion (31)




NACA TN No. 1826 W7

shows lmmediately that the 6-derlivative of the second term in the bracket
is zero for either case and the contrlibution of the first term is _

o0,

5, "3 PEP IS

m=1ln=20

O DIND R 1N
= n = . .

Furthermore, all verticel velocltles on the axis 1tself may be obtained
by considering only m = 1, because

-

1 -
p—>0

The usual geomstric symmstries also contribute toward simplifying the
calculations. For exemple, 1f the horseshoe vortex lies in the*hori-
zontal plane of symmetry of the tummnel,

&ﬂ.(E) P rm(e) = %(2) =0

If, in addition, the vertical pleme of symmetry of the junnel 1is also
the vertical plane of symmetry of the horseshoe vortex, all even values
of m are eliminated; In the corresponding antisymmetrical case (es
with aileron deflecticon) all odd values of m are eliminated.

Cylindrically Symmetric Texrm

For a normel velocity at the tunnel wall gp(t) that is independent
of 6 +the potentlal function cannot be given exactly in the form of the
preceding section since for m = O +the integral with respect to ¢ will,
in general, not converge for q in the nelghborhood of zero. It is
necessary to add additional terms to the potentlel so as to insure the
convergence of the integrals wilth respect to q. Moreover, these terms
must be of such a nature that the potential fumectlon is stlll harmonic
and gives the required normal velocity at the tummel wall.

e o+ e ———— e —————— o n ey T % %7t e e ot o s e = e e =
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’

The singularity-free potentlal inside the tummel then takes the form

1 [ Jo(ipg) «
Q:;L mj:w SO(B) cos Q(B—g) dB

2nkf 2 e
= q qzd/ioo SO(B) d-B:l dq

L Eo®)
Bl—>e P

valus of the integral. Both the iimit snd the integral must be assumed
to exist. .

where k =

and where f go(B) @B 1s the Cauchy principal

The appeoarance of these additional terms is not wholly due to the
presence of the open section in the tunngl. For a source in a completely
closed turmel the second term does not vanish and would have to be used
in calculating the tummel-induced perturbation velocity by the method of
reference 13. However, for a closed body or a vortex system plus its
reflections in a completely closed tymnel, both of these additional
terms vanish. ’

It is easy to verify the fact that the additional terms do insure
the convergence of the integral with respect to q. A straightforward
differentiation then shows that @ 1s in fact harmonlc-and satisfies

the boundary condition %gl o1 = g,(&).

For the closed-open-closed tunnel, the boundary condlticn (see
part I) that the velocities far upstream and downstream be equal is no
longer automatically satisfied by putting the totel tangential velocity
on the jJet surface equal to zero. The determining conditions for ¢p

are now

(1) APy =0 : (p < 1)
(2) g—g‘ﬂ =0 (¢<ea and ¢t >D)

p=1

odp| d(% + o¢
(3) yg'p_:l—“—(%?—llpd*‘u (a<t<D)
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() lim OB gy oA
o '
(5) f =0 C(t=a)
p=1 .

Conditigns (1) and (2) are satisfied by assuming go(t) =0 for E<a
and £ >Db. Thus

T (10q) b b \
‘DA:%L%L go(B) cos a(p - &) dﬁ-%é‘[a go(B) dl%|dq (3

Again 1t.is desired to find gy(t) for a <& <b so that ¢, will

satisfy conditions (3), élb), and (5). The representation of gp(£) in
the same form as before (equation 27)

go(&) = hog sm§H+;.h0n sin nne2

automatically satisfles condition (5) » Substitubing this serles in

egquation (32) gives
o = 2 BonPon (6 5°) °
n =

where o ‘
1 Jo(1pq) fb xp-a
Poo(g,P) =;[ l;?%-m) . sin 35 b - & °°8 q(p - &) aB
0

b
& [ emz Lot e
g=v g - _J
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Pon(E;p) =%f%§—?§%yf inmté;cos a(p - &) ap
-2 bin =~ 2 3gla
2 [ st i

The resulting Infinite series for the Pon(g ,p) obtained by means
of contour integrations are given in appendix A.

Condition (3) them becames

© OPn(E,1 9+ 0
n= Ip:l .
oPon
But (see appendix A) 1lim —a— = lim —S¢
E> +. §—> -®
N a¢> a¢ . )

and so = gso that condltion ‘becomes

g$+°°5— ga- 55
1im 0y _ 0. Thus it is meces that
§—=,+oo5—§— =0. us 8 sary

ZhOn[l-(l)nJ
2b-a

n=

There exists a wmique value of u for which the coefficlents hj,, will
satisfy this equation and 1t cen be found as follows: ILet

hop = hop' + ubipn '’

1 aPOn(g:l) a(¢0 + QCI
;hon SE = St

where

p=L
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and
laPOn(g)l) =
R
then if
hoo! + uhoo” Z&'On' * uhon'9 Ii - (0= _
b - a - a

2ho ! + Z-——-[l - (19
ehoo“”féf"i - e

The coefficients hon' and hon'' are found by solution of sets
of simultaneous linear equations, as described in the previous section.

The function @,'' =2 ho,''Pon(E,p) 1s the perturbation potential
which, when added to that of a wmiform flow, gives the potential of the
d.istm'bance-free expanding tumnel described in part I Indlcated in

1t
figure 2. The corresponding perturbation velociltles have equal
and opposite values at « and =-cw.

EXAMPIE

As a samewhat simplified illustration, the problem of a semi-
infinite wnit doublet distribution (degenerate horseshoe vortex) along
the tumnel axis was consldered. The tunnel was assumed to have an open
Jet, 3 tunnel radil in length. The tunnel interference was calculated
for four different positions of the upstream end of the doublet distri-
butlon, these positions being 0.1, 0.k, 0.7, and 1.0 radii downstream
from the entrance. If the upstream end 1s taken as the origin of the-
coordinate system, 'l:hen (see appendix C)

(1 1 J1(iq)
Ty )(g) pCIy f WEKO(Q) + K1(q)] cos q-§ dq

rm(J)(g) = @41, 341) . (33)

Il
o
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where Ko and K3 are the Bessel functlons as defined in reference 15.

The points {E,i were teken as a:, a+ 0.3, a+ 0.6, « « «a+2.7,
that is, a set of ten points, at 0.3 inte , starting with the entrance
1lip of the tunnel. The coefficients hjn l)were found by the method of

. least squares for N =0, ql, e « o, 5 and’also so as to satlisfy the

dP;,(€,1
equations r]_(l) (¢4) = E hln(l) ~—l-§-§-’—)—- at all ten points. Plots

n=0 )
of the resulting functions gl(l)(g) for the different values of N

indicated that convergence was essentially complete for N between 3
and 5. This simplification results in appreciable saving in the amount
of computation. Not only is 1t necessary to solve a smaller set of
simultaneous equations, bubt also P, and BP]_H/BE need be found for,
fewer values of n.

The computation was fairly straightforward. In the determination
of rl(l)(g), K, and K; were.obtained fram the tables of reference 15,

and J; end Jl' from the tebles end from the relations between the

Bossel functions end their derivatives (references 15 and 16). Weddle's
formula (reference 17) is convenient for performing the integratioms.
In the case of Pln, the values of yg1 appearing in the formula

for an(S) (p) were found from the formule in appendix ITT of refer-
ence 15, and J; and Jy' as just noted. In the evaluation

1 : 1 1
of lim =Py, it is noted that the valus of lim Zd3(x) = 5.

p—0 P x—0

The results of these computations, together with those for the
campletely open and completely closed tunnels and those given in refer-
ence 3 are shown in Tigures 24, 25, and 26. In figure 2k, the vertical
tunnel-induced velocity along the axis for the four different positions
of the 1lifting element together with the results for the open and closed
tunnels are plotted against distance from the 1lifting element. The
same results are plotted against the longitudinal distance from the
entrance 1ip in figure 25. Figure 26 shows the results of reference 3
campared with the results of this paper for the seme case - that of the
1ifting element 1 radius downstream from the entrance 1ip. .

. The tunnel-induced velocity in the upstream reglons and in the
neighborhood of the 1lifting element, although only slightly less than
that for en open tumnel for the lifting element 1 radius downstream,
falls off more and more rapidly as the 1lifting element 1s moved towards
the entrance. 1ip. The meximm induced velocity is attained about 1 radius
upstream fram the exit, and is nmever more than 78 percent of the maximm
value for a campletely open tumnel. After the maximm the values fall
rapidly and approach the values for a closed tunnel In the downstream
regions. The results of reference 3 (see fig. 26) are consistently below
the present results especlally in the region behind the 1lifting element.




NACA TN No. 1826 . 53

An extrapolation from the present results indicates that the induced
upflow at the 1ifting element, for the 1ifting element in the plene of
the entrance lip, is approximately zero, or the average between the
completely open and coampletely closed cases. The same result (that the
effect in the plane of the entrance 1ip is the average of the effects
for the campletely open and the campletely closed tunnels) was also
obtained for the two-dimensional tumnel (fig. 18).

CONCLUSION

-

For an open wind tunnel, the corrections corresponding to an
Infinitely long open Jet will usually be adequately accurate if the
reglon of interest (where the 1ift is located and where the boundary-
induced flow 18 belng considered) is at least half the Jet helight.from
the Jet entrance and exlt sections. As the distance of the lifting
element from the entrance 1s decreased below this limit, the bowmdary-
Induced flow decreases rapldly and, when the 1ifting element is in the
entrance plene, the Induced angle at the 1ifting element is about the
average of that for an open tunnel and that for a closed tunnel.

In the theoretical studles of these flows, the usual boundary condi-
tlons of pressure wniformity on the free surface and of zero normal
veloclty on the closed surface must be supplemented with the conditlons
that the veloclty be continuous at the entrance 1lip apd that the velocities
far downstream and far upstream 1n the closed sectlons be equal. For
the two-dimensional open tummel, a convenlent general mathematical approach
1s to transform the iInfinite strlp (representing the tunnel) +to the upper
half-plane by the logarithmic transformation and then to develop the
deslred caomplex velocity in this transformed plane. For the clrcular
open tumnel the solution may be effected by expressing the potential by
a finite serles of Bessel functions, satisfying the boundary condition
on the free surface at a finite number of points, and solving for the
cosfficients by simultansous linesar equations.

For noncircular open wind tunnels, solutions in terms of available
functlons will be very inconvenient. For such cases, the trends indicated
by the present results may suffice, when applied to the presumably known
corrections for the infinitely long open and closed configurations, to
provide adequate corrections. Solutions for the general three-dimensional
configuration may also he possible by electrlcal-analogy methods, in

which either the perturbation veloclty potentlal or the acceleration
potentlal is anglogous to the electrical potential iIn an electrolyte
solution. Such analogies may be characterized, however, by considerable
technical difficulty.

Langley Aeronautical Laboratory )
National Advisory Commlittee for Aeronautlcs
Langley Air Force Base, Va., December 20, 1948
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APPENDIX A

EVATUATION OF P (¢,p)

Evelwation for m # O

Contour integration.~ For n # O,

© Jy(ipg)

mn(é,p) —r(ﬁy Bin mr-.E—— cos q(Bp - &) dB (A1)

The inner integral may be found directly:

b
f stn nf=2 cos q(p - &) a8

fb%m%xH+ q;B - .&?l. + smEmH“-_q(B? gi} dp
=
P

The problem of eveluating Pmn(g ,p) thus reduces to that of evaluating
Integrals of the form

ol =

[1) cos g(b - &) - cos q(t - a{] . (n2)

. f“ In(ipg) cos kq dq
o 1a3;'(1q)(& - b)

Consider the integral In the complex =z-plane

1 I (1pz) eikz
2ni 123" (iz) (2 - B2)
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around the contour indicated in figure 27. Its velue is the sum of the
resldues of the Integrand at its poles inside the cantour. These poles
are the values of z for which Jy'(iz) = 0. The zeros of Jp' will

be designated ygy; they are real and may be obtained from the formula

in appendixz ITT of reference 15. The poles of the Integrand then occur
at 1z = ygn, that is,-at 2z = -1ygp. Since only the poles within the

contour are desired, only the negative zeros of Jy' are comsidersd.

The residus of m at z = -1y, 1is,

z * 1yegm

1 = I (1Z) - Jp'
2ty T (12) gy, ‘w1 " n (ysm?

since Jp'(Jgm) = O; by the definition of the derivative this expression
reduces to

- i

I zysmj

The residue of the Integrand at z = -iygy 1is thus

In(pYem) o™ 5
ysm(Ysm2 + }12)Jml "(yem)

I
But the Bessel functions satlsfy the relation
1 1o 1 m.2 _

In "';Jm +<l-§>Jm—O

go that at X = ygy, where Jp' =0,

2 g 2
In' ' (Yem) = ——Jm(ysm)

}'sm

whence, finally,

1 Jm(iQZ)eikZ dz - Z Jm(Dlem)elqmysm
el 1sz‘(1z)< (Em m - Yem )Jm(ym)
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where the number of terms in the summation depends on the radilus of the
outer semicircle.

For k 20, if the radius of the outer semlcircle is allowed to
approach infini’l;y in d.iscrete steps so as to avold the poles of the
integrand, the j.ntegral over the semiclrcle approaches zero. The
limiting values of the integrals along the fwo inner semicircles, as
their radll approach zero, are readlly determined by the usual process as

,Im(-iph)e~1kh
kb2 3, ' (-1h)

In(1ph)eiih
4n2g '(in)
These two terms may be comb:!ned.{ after noting that reversing the sign

of the argument in J and Jy merely reverses the slign of their ratio,
to

__3,(1pm)
———2112.]511'(111) sin kh

Equating the total integral along the Infinite contour to the sum of the
residues thus gives

1 j‘” Tp(iea)e™d dg  _  Fp(ten) ..o
Tdo 100y' (1) (@ - 17) 202, (1n)

i i Fn(pyem) e Telyey
( Ysm hg)(me - Fsmz)Jm(:Ysm)

8=0

vwhere the ygn terms are now defined as the positive zeros of Jp'

instead of the negative zeros (if J,'(x) = 0, so also does Jp'(-x)).
By equating the Imasginary part of the lefit~hand term to the right-hand
side, which is a pure imaginary, there results, finally
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" Jy(1pg) cos kq dg _ midp(iph) .
1gdp' (1) (@ - ¥2) 2423, (1h)

N ﬁzm: Tn(oyame oMy
pogges OGme + hQYmQ N ysmz)%(ymn) ‘

Expressions for P, n # O, m # O.- In the preceding development
it was apsumed that Xk > 0, which was acceptable with regard to equa-
tion (A2) in view of the fact that the cosine 1s an even fumction of the
variable. This essentlally nonnegative valus of k must be retalned,
however, in the final expressions for Pp,(&,p):

0

P _ -% Jm(ip.—b— ?ﬂa) E’l)ns-in l'bb--galn:[ - gin lgb--aaln:,;\

m nJ'[JlinJT
.J.b-am 'h_a —

+__£ﬂ_i In(oysm)yem . E_l)ne-lb-glym
7)o he
- o7 el (13)

Now for a <& <D

‘(-l)nsinjl’b—'_—g.!iﬁ“- = (-1)Pgin [b - a -(E - a) m:l

D -a

£ -~ a
- a

-sin 'n:n-li—:%l-

= -gin

I
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58
For £ <a,
(_l)nsinlb_"glﬂﬂ_ = -(-l)ns;inb -a+ (a- g)m]
b-a b-a
a-t
= sin nm—y
- o el 28
For £ >,

(-1)%in Ib -_E,fm _ (_l)nsm!g -a- (b~ a)mt]

b-a L b-a
- E-a
= oln oy
=sinmr|—.i—:—gl-

The first term on the right-hand side of equation (A3) is thus equal %o

zero for

E<a or & >Db. The desired expressions for Pp,(t,p), n # 0,

are therefors, for a < £ <D,

Pon (8 ,0)

and, for

P (5,0)

In (log2)
- a

e R

“5-a i 4™ (o) E'(g'a)ym - (-1)ne‘(b”€)5'sm:]

8 =0

tE<a or £2>0,

s ; an(S) (o) [6— |€-2 |yem - (_1)ne‘|b‘§|ysm:l
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where

In(PYem) Ysm (n £ 0)

an(S) - -
l}’sme + <bmf e>:’ <m2 = Ysma) I (¥ em)

The calculations for n = 0, which follow similar lines, are not
glven here. The final formulas are, for a < & <0,

J :I.p_(__y"t
m( 2-b"'a> Bin_jlg-a

Eap(Esp) = —3 v/ 1 27D -
2o (56 - ) )

(s) (b= 8)Fem _~(t-a)
g e e O gty (vl

for & < a,

P (E,0) = s§= _ 4o (®) (o) E’ﬂm o= (b=8)Fem - - e-(a_g)y%l

and, for £ >,

P olE,p) = -2' Qo B () Esm o~ (E-D)Tem + _.(_’I__y e"(g'&)ysﬂ

g =0 2(b - a

where

) _ Jm (P sm)
DR iy e

Eveluatlion for m =0

The evaeluation of Pyn(f,p) for m = O proceeds essentially as
before with the difference that the contouwr of integration must avold
the origin. For n = 0, the final formules are for a < §& <b,

e e = T St e T S e e e e e < e e = e S A ¢ s e ==
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T
sin§b

- 8

ot = O] e, DL EEE

i .+
2(d - a) 2(b - a)‘TO'IEl 2(b - a))

- (b-£) - (&-a)
+ ;: 200 | ye00 0 et (b mao]

for £ <a,

2
Poo(t,p) = 'E(b ;t a):, * : -na
) 2<'b - a;

. E (s) -(b-€)ys0 _ -(a-t)
+ P %o Js0e /980 7__” S f 2 e ysi]

and, for ¢ >Db,

2
POO(E,D) = 'E(b ;[ a):l - £ -Tta
20 - a)

- t QOO(B) oo~ E-PITs0 - R1>—T-[E)' e-(g-a)ysﬂ

8=20

For n # 0, the corresponding formulas are, for a < & <D,

Pon(850) = - = [(& - @) = (-1)2(b - )]

P -a

+ O(b-a E - a
gin g

4Dt 5 1fy D ‘b - a

J"b—ao(“b-a

S Z) %H(S)E-(e-a)ygo ] (_Dne-(b-a)yﬂ
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for £ < a,

Zon(t,0) = - [l - €) - ()3 - ¢]
b-a :

bm_r _ ; QOn(B) E—(a-ﬁ)yso - (_l)ne-(b-ﬁ)ysﬂ

and, for & >,

Fon(£,8) = =——| (6 = &) - (-1t - v)]
b-a
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APPENDIX B

P (&1
PROOF THAT —# IS BOUNDED AS n—w, a < £ <D

Differentiating the formula from appendix A for Pyn(£,p) and
putting p =1 glves

2 (6D (g Ca
BE _ j_% (ib a) cos

N E-(s-a)ysm
L l}sm = ysm

+ (-1)% P g)yfm\il

The second term of the right-hand member 1s of order % for large n 8o
that
4_0xn
al)mn( £,1) Jm( b -a E-a
1im St = 1im cos mr_—;——
n—w £ n__,miJm’(ibm ) -ea

The cosine factor of this expression merely oscillates between 1 and -~1.
For the remaining factor, it 1s noted from the asymptotic expressions
for the Bessel functioms (reference 15, pp. 59-61) that Jy(it) is

essentially of the form 1% ett as t-—ow, from which it can be readily
\2x

I (1t)
13, T(1t

shown that the fraction approaches unity as + —yoe
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APPENDIX C
DFERIVATION OF EQUATION (32):

Equation (32) was derived for use in calculating scme of the results
glven in reference 13, but it was not explicitly stated and discussed
in that paper. Because certaln steps In 1ts develomment are nobt obvious,
the present outline of its derivation is given. Familiarity wilth refer-
ence 13 will be assumed.

Certaln difficulties arise In the treatment of the doublet line
directly; so the result is found by comsldering a horseshoe vortex of
finite span and letting the span approach zero. Equation (6) of refer-

od,

ence 13 gives the formula for g (vhere &, 1s defined in refer-
p=.

ence 13) corresponding to a horseshoe vortex of estremgth I and
span ¢ having one tralling vortex along the tumnel axis and the other
to the right of the axis. The procedure for the doublet consists of
letting the yaw angle ¥ be zero, expanding the radicals in ascending
powers of o, and proceeding to the next step 1n the analysis, where o
will eventually be made to approach zero. In the expemsions, powers
of o higher than the first may be neglected except where o occurs
in the product &0, since E +takes on infinite values; furthermore,
gince for the doublet the field should be synnnetrical about the vertical

plene of symmetry (e = %), msymmetrical gq%:ors, as ¢ cos 6, may be

immediately eliminated. The formula for L is thus
. =1
od ‘
2 =-I9 1im { ein 9(____50 et >
3 o1 M g0 Vi+ 22 \J1+ 2

- § gin 6

- 1
0'(§2 + S:L'D.ee) < \’l + §202>

£ gsin 6

1 - cos0 (c1)
£2 + sinfe | \[3 42 (14 £2)3/2

According to the procedure of reference 13, 1t 18 necessary to make a
Fourier analysis of the three terms in the braces and then to insert the
Fourier coefficlients in equation (8) of reference 13.
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In the first term in the braces, the expression In the brackets is
the first end only Fourler coefficlent. Changing £ to B eand inserting
the expression into the immer integral of equatlon (8) of reference 13
glves .

o]

1im ( fo - B )cos a(p - &) ap
=00, \N1+ 2?2 \1+ g2

which, if integrated by parts, reduces to

oo

L 1 _ o ] i
cimo .. [(1 + 132)3/é ‘ (1 + 3202)3/2_1 sin q(B - §) ap

The contribution of the first term in the brackets 1s

1 [®sing(p- £ dp __
qu(lq+Be)3/2 = -2K, (q) sin g&

(See reference 15, D 52.) The fact that the contribution of the second

teym in the brackets is zero follows immediately, upon performing the
change of variable p = Bo, from the Riemann-Iebesgue lemma (reference 11,

p. 172) .

The third term in the braces of equation (Cl) is converted as
follows:

_ _&sin @ [ 1
£2 + o1nPo | V1 + E2 (1 + £2)3/

go that again the first end only Fourler coefficlent is given directly.
Inserting it into the immer integral of equation (8) of reference 13
and Integrating by parts gives -

- m———&—r s q(p - &) B = TasmaB-t) g
[co (1+52>3200 ./:o \’1+B2

cos=0 ] __._ZFtsine
2

(1 + 52) 3/2

= -2¢K,(q) sin gt
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The second term in the braces of equation (ClL) is not a one-term

Fourier series. Its ntl Fourier coefficient is glven by a constant
times

fznﬁsinesinne

noelnmily . —2% )dﬂ
o oe? + sine) \/l + 2R

Inserting this expression in the immer integral of equation (8) of refer-
ence 13, and reversing the order of integration gives

feﬁsmesmnefw B /l" 1 cos g(B - &) a4 a8
0 Lo o+ siO)\ \] 4 @22

After substitution of p = Ba, the limit of the Inner Integral becames -

1m =

® D 1 P
= 1- cos gl= - §> dp
c—0 OJ p2 + 0251'0.29< \ll + P2> (U

Integration by parts and elimination of terms 1n o2 reduces this
expresslion to

2]
1 L | 21’”3/2 mq(—--g)dp\
g—0 ¢ 92 (1 + 1°) _l
which is zero, by the Riemamm-Iebesgue lemma.

Finally, then, for the unit doublet ({—% = ])

2 sin o [ 91(iep)
0, 22220 [ Ton g [Fol@) * Tala)] sin gt &g

» I (1q)
g?—lpnl -5 ef (5 '(:T [#o(a) + Ea(a)] cos ot ag

- O OIS -
e m v — e P —— ————- p
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The potentlal ¢, of a wnit doublet line along the axis 1s

N ¢ / g +l\=sm9/ £ + 1

TR+ t2 Ve2 + 02 + ¢2 P&\/geﬂupe

whence

9%, _ sin @

SE |1 (2 + 1)37-2

The flow of the usual reflectlon vortices for .wings of finite span
reduces, as the span becomes arbitrarily small, to & uniform upflow in
the finite sectlon of the tunnel and therefore contributes nothing to
the longlitudinal velocity.

o(dy + &g
The coefficlient of sin & 1In - £ l 1s thus seen to
p=1
be the expression given in equation (33).
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(a) Infinitely long open twmnel.

(b) Open Jet between closed entrance and exit regions.

Pigure l.- Tllustrations for.discussion of surface perturbation velocity
in open wind tumnels.
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TN

-

(a) Contracting jet. The pressure on the free surface exceeds
both the upstréam and downstream pressure, but is very
close to the upstream pressure.

-
RN

(b) Expending jJet. The pressure on the free surface is less
than elther the upstream or downstream mressure, but is
very close to the upstream pressure.

Figure 2.— Contracting and expanding jets (2 or 3 dimensions).
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;\—

(a) Straight ex:i'.b.

~| N

L. N

(b) Bell—mouth exit.

N L ~NACA

(c) Enclosed space beneath the lower free surface (two—
dimensional tumnel). .

Flgure 3.— Splllage from the lower 1lip of the exit.
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Figure 4.— Two—dimensional jet with different pressures on the two
free surfaces.
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/—\\
C

c

(a) Deformation due to image system; no downwash
at the wing ltself.

~JRA

(b) Undeformed upstream flow; downwash at wing
is half of that at infinity.

Pigure 5.— Two—dimensional open tunnel of infinite length.
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@111/1 AP A -l A A — % I

(a) Two—dimensional vortex, showing current lines between the
two plates.

T2 T A M AT 4 > o -

(b) Two—dimensional vortex in a perturbation field having a horizontal
veloclty componsnt.

(c) Three—dimsnsional element of 1ift.

S NACA

(4) Horseshoe vortex of finite span.

Figure 6.— Velocity—potential analogies for two— and three—dimensional
1ifting elements.
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(a) Vortex on the center line.
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(b) Unsymmstrically located vortex.

Figure T.— Velocity—potential analogies for the two—dimensional
closed—~open tunnel.
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(a) Vortex on the center line.
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(b) Unsymmstrically located vortex.(incomplete representation).
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(c) Expanding or conmtracting Jet.

Figure 8.— Veloclty—potential analogles for the two—dimensional closed—
open—closed tunnel.
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(2) Lifting elemsnt on the center line.
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(b) Unsymmetricel location of the lifting element.

Figure 9.— Acceleratlion—potential analogies for the two—dimensional
closed—open tunnsl.
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(2) Lifting elemsnt on the center line.

\

(b) Tunnel errangememt that corresponds to cmitting the additional
short strips.
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(c) Expanding or contracting jet.
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(d) Curving Jet.

Figure 10.— Acceleration—potential analogies for the two—dimenslonal
closed—open—closed tunnsel.
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Insulator

(a) Closed-open tunnel.

(v) Open section represented by many
longitudinal strips.

(c) Open section represented by only
two longitudinal strips, '

Figure 11.- Acceleration-potential analogy for three-dimensionsl
closed-open tunnel and two approximate acceleration-potential
anslogles for three-dimensional closed-open-closed tunnels.
The closed-open anslogy mey also be considered as an approxi-
mate analogy for the closed-open-closed tunnel.
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\ minus
equals m
(a) Representation of 1lifting element.
‘ )
minus LULLLLULLLLL UL MMW
eqQuAYS  wcewrtssesiseies ., sttt g 20l

eqQuals  zvsiiisismnn

(b) Representation of ogen boundary in
closed-open-closed tunnsl.

Filgure 12.- Acceleration-potential analogies aé the

difference between two veloclty-potential analogies
slightly shifted relative to each other.
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Figure 13.— Physical and transformed spaces for two—dimensional
closed—open tunnel of unit height.
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Figure 1l4.- Physical and transformed spaces for two-
dimensional tunnel of unit helght with one exlt boundary.
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Figure 15.— Physical and transformed spaces for symmetrical two—
dimensional closed—open—closed tumnnel of unit height.
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Figure 16.~ Maps of the functions w;j{z) and wp(z).
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Flgure 1l7.- Tunnel-induced engle on axis of two-dimensional
¢closed-open tunnel, with vortex at several locations along
axis.
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Figure 18.- Tunnel-induced angle on axis of symmetrical two-
dimenslonal closed-open~closed tunnel, with vortex at several
locations along axls. Length of open section 18 1.5 times
tunnel height.
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Flgure 19.- Tunnel-Iinduced angls on axis of two-dimensional
closed-open-closed tunnel having one exit lip, with vortex
at two locatlons along axis. Length of lower free surface
1s 1.5 times tunnel height.
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Filgare 20.~ Tunnel-induced horilzontal velocity on axis of
two-dlmensional closed-open-closed tunnel having cone exit
1ip, with vortex at two locatlons along axils, Length of
lower free surface 1s 1.5 times tunnel height. Ordinate is

(Induced horizontal veloci'q) hv ' op
r

Vv
Induced horizontal velocity) 2h
v cecy
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Flgure 21.- Oomparison of tunnel-inducéd angles con axls for three
types of two-dimensicnal tunnels. Length of open sectlons for
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Figure 22.-~ Tunnel-induced vertical velocity v ' on axis of

symmetrical two-dimensional closed-open-closed tunnel
having additional velocities of -up and up on the
upper and lower free boundaries, respectively. ILength of
open sectlon is 1.5 times tunnel height.
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Frgure 23—Closed- open-closed tunnel showing
coordrnate Systems.
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Figure 24.— Tunnel - induced velacity paramefer ‘along tunnel axis for several

positions of the lifting element in a closed-open-closed circular Tunnel.
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Figure 27.-Fath of complex confour infegrafion.
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